题目内容

2.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.若sin∠DFE=$\frac{1}{3}$,则 tan∠EBC的值为$\frac{\sqrt{2}}{2}$.

分析 首先证得△ABF∽△DFE,sin∠DFE=$\frac{1}{3}$,设DE=a,EF=3a,DF=$\sqrt{{EF}^{2}{-DE}^{2}}$=2$\sqrt{2}$a,可得出CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,由△ABF∽△DFE,可得tan∠EBC=tan∠EBF=$\frac{EF}{BE}$=$\frac{\sqrt{2}}{2}$.

解答 解:∵四边形ABCD是矩形,
∴∠A=∠D=∠C=90°,
∵△BCE沿BE折叠为△BFE,
∴∠BFE=∠C=90°,
∴∠AFB+∠DFE=180°-∠BFE=90°,
又∵∠AFB+∠ABF=90°,
∴∠ABF=∠DFE,
∴△ABF∽△DFE,
在Rt△DEF中,sin∠DFE=$\frac{DE}{EF}$=$\frac{1}{3}$,
∴设DE=a,EF=3a,DF=$\sqrt{{EF}^{2}{-DE}^{2}}$=2$\sqrt{2}$a,
∵△BCE沿BE折叠为△BFE,
∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,
∵△ABF∽△DFE,
∴$\frac{EF}{BF}=\frac{DF}{AB}=\frac{2\sqrt{2}a}{4a}$=$\frac{\sqrt{2}}{2}$,
∴tan∠EBF=$\frac{EF}{BF}$=$\frac{\sqrt{2}}{2}$,
tan∠EBC=tan∠EBF=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题主要考查了矩形的性质以及相似三角形的证明方法,以及直角三角形中角的函数值,找到等角代换是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网