题目内容

20.如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=$\frac{{k}_{2}}{x}$的图象相交于A(-2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+$\frac{1}{2}$n=0;③S△AOP=S△BOQ;④不等式k1x+b$>\frac{{k}_{2}}{x}$的解集是x<-2或0<x<1,其中正确的结论的序号是②③④.

分析 根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=$\frac{{k}_{2}}{x}$中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx+m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b$>\frac{{k}_{2}}{x}$的解集是x<-2或0<x<1,故④正确.

解答 解:由图象知,k1<0,k2<0,
∴k1k2>0,故①错误;
把A(-2,m)、B(1,n)代入y=$\frac{{k}_{2}}{x}$中得-2m=n,
∴m+$\frac{1}{2}$n=0,故②正确;
把A(-2,m)、B(1,n)代入y=k1x+b得$\left\{\begin{array}{l}{m=-2{k}_{1}+b}\\{n={k}_{1}+b}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{k}_{1}=\frac{n-m}{3}}\\{b=\frac{2n+m}{3}}\end{array}\right.$,
∵-2m=n,
∴y=-mx-m,
∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,
∴P(-1,0),Q(0,-m),
∴OP=1,OQ=m,
∴S△AOP=$\frac{1}{2}$m,S△BOQ=$\frac{1}{2}$m,
∴S△AOP=S△BOQ;故③正确;
由图象知不等式k1x+b$>\frac{{k}_{2}}{x}$的解集是x<-2或0<x<1,故④正确;
故答案为:②③④.

点评 本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网