题目内容

2.图是一个长、宽、高分别为4cm,3cm,5cm的长方体,一只蚂蚁从顶点A出发,沿长方体的表面爬行至点B,爬行的最短路程是多少?

分析 把此长方体的一面展开,在平面内,两点之间线段最短.利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.

解答 解:因为平面展开图不唯一,
故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.
(1)展开前面、右面,由勾股定理得AB2=(5+4)2+32=90;
(2)展开前面、上面,由勾股定理得AB2=(3+4)2+52=74;
(3)展开左面、上面,由勾股定理得AB2=(3+5)2+42=80;
所以最短路径长为$\sqrt{74}$cm.

点评 此题是平面展开图--最短路径问题,主要考查了勾股定理的应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网