题目内容

10.△ABC中,点O为∠ABC和∠ACB角平分线交点,若∠A=60°,则∠BOC=(  )
A.60°B.90°C.120°D.150°

分析 先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质得出∠OBC+∠OCB的度数,由三角形内角和定理即可得出结论.

解答 解:∵OB、OC分别是∠ABC和∠ACB的角平分线,
∴∠OBC+∠OCB=$\frac{1}{2}$∠ABC+$\frac{1}{2}$∠ACB=$\frac{1}{2}$(∠ABC+∠ACB),
∵∠A=60°,
∴∠OBC+∠OCB=$\frac{1}{2}$(180°-60°)=60°,
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-60°
=120°.
故选C

点评 本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网