题目内容

如图,C为线段AB的中点,D为AB上一点,E为AD的中点,且AD=6,EC=2.
求:CD、AB的长?
考点:两点间的距离
专题:
分析:根据线段的中点的性质,可得AE、ED的长,根据线段的和差,可得CD、AC的长,在根据线段中点的性质,可得答案.
解答:解:∵E为AD中点,AD=6,
∴AE=ED=
1
2
AD=3.
∵EC=2,
∴CD=ED-EC=1,
AC=AE+EC=5. 
又∵C为AB中点
∴AB=2AC=10.
点评:本题考查了两点间的距离,利用了线段的和差,线段中点的性质.
练习册系列答案
相关题目
图形可以帮助刻画和描述问题;图形可以帮助发现和寻找解决问题的思路;图形可以帮助表述和记忆一些结果.积累一些图形模块,在类比发现中你会体验到问题解决的轻松,看图想事,看图说理一定会让你受益匪浅!
【探索与发现】
如图(1),梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.则
S△ABD
S△BCD
=
OA
OC
成立吗?试说明理由.
【思路与分析】
过点A作AE⊥BD于点E,过点C作CF⊥BD于点F.由于△ABD与△BCD同底不同高,所以二者的面积比可以转化为对应高的比;容易得到△AOE∽△COF,从而据相似三角形的性质,借助等量
AE
CF
的代换,
S△ABD
S△BCD
=
OA
OC
成立.如图(2),对于四边形ABCD,
S△ABD
S△BCD
=
OA
OC
的结论是否正确?试说明理由.
【应用与综合】
图(2)中的四边形ABCD沿BD边对折,连接并延长AC交BD(或其延长线)于点E,图(3)和图(4)是由此可能得到的情形:
在图(3)的情形下,试比较大小:
S△ABD
S△BCD
 
AE
CE
;(用“>”或“<”或“=”填空)
在图(4)的情形下,试比较大小:
S△ABD
S△BCD
 
AE
CE
;(用“>”或“<”或“=”填空)
【拓展与延伸】
(1)如图(5),E、F分别是△ABC两边AB、AC的中点,线段BF、CE相交于点P,则
CP
PE
=
 

(2)如图(6),E、F分别是△ABC两边AB、AC上的点,且 AE=mEB,AF=nFC,线段BF、CE相交于点P,则
CP
PE
=
 

(3)如图(7),在△ABC内任取一点P,连接并延长AP、BP、CP,分别交对边于点D、E、F,则
PD
AD
+
PE
BE
+
PF
CF
=
 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网