题目内容
2.方程组$\left\{\begin{array}{l}{x+y=1}\\{2x+y=5}\end{array}\right.$的解为( )| A. | $\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=4}\\{y=-3}\end{array}\right.$ |
分析 两方程相减,即可消掉未知数y转化为关于x的一元一次方程,然后解答即可.
解答 解:$\left\{\begin{array}{l}{x+y=1①}\\{2x+y=5②}\end{array}\right.$,
②-①得:x=4,
把x=4代入①得y=-3,
所以方程组的解为:$\left\{\begin{array}{l}{x=4}\\{y=-3}\end{array}\right.$,
故选:D
点评 本题考查了二元一次方程组的解法,利用加减消元法比较简单.
练习册系列答案
相关题目
14.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )

| A. | 60° | B. | 50° | C. | 40° | D. | 30° |
11.
如图,∠1=∠B,∠2=20°,则∠D=( )
| A. | 20° | B. | 22° | C. | 30° | D. | 45° |