题目内容

12.如下图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5,则这个矩形对角线的长是(  )
A.2.5B.5C.6D.7.5

分析 根据矩形的对角线互相平分且相等可得OA=OB=$\frac{1}{2}$AC,根据邻补角的定义求出∠AOB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,然后求解即可.

解答 解:在矩形ABCD中,OA=OB=$\frac{1}{2}$AC,
∵∠AOD=120°,
∴∠AOB=180°-∠AOD=180°-120°=60°,
∴△AOB是等边三角形,
∴OA=AB=2.5,
∴AC=2OA=2×2.5=5.
故选B.

点评 本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等,证明三角形是等边三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网