题目内容
20.分析 先根据平行线的性质得出∠BAC+∠ACD=18°,再由角平分线的性质可得出∠EAC+∠ACE=90°,根据三角形内角和定理即可得出结论.
解答 解:∵AB∥CD,
∴∠BAC+∠ACD=180°.
∵∠BAC的平分线和∠ACD的平分线交于点E,
∴∠EAC+∠ACE=$\frac{1}{2}$(∠BAC+∠ACD)=90°,
∴∠AEC=180°-90°=90°,
∴AE与CE互相垂直.
故答案为:互相垂直.
点评 本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
练习册系列答案
相关题目
10.
如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则$\frac{OA}{PA}$的值是( )
| A. | $\frac{2}{13}\sqrt{13}$ | B. | $\frac{12}{5}$ | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |