题目内容

6.如图,△ABC中,∠A=80°,BD=BE,CD=CF.求∠EDF的度数.

分析 如图,根据等腰三角形的性质可求得∠1=∠2∠3=∠4,再结合三角形内角和定理,可用∠B和∠C分别表示出∠2和∠4,结合平角的定义,可找到∠2+∠EDF+∠4=180°,可求得∠EDF的大小.

解答 解:∵∠A+∠B+∠C=180°,∠A=80°,
∴∠B+∠C=100°,
∵BD=BE,CD=CF,
∴∠1=∠2∠3=∠4,
∵∠B+∠1+∠2=180°,∠C+∠3+∠4=180°,
∴∠2=$\frac{1}{2}$(180°-∠B),∠4=$\frac{1}{2}$(180°-∠C),
∵∠2+∠EDF+∠4=180°,
∴∠EDF=180°-∠2-∠4
=180°-$\frac{1}{2}$(180°-∠B)-$\frac{1}{2}$(180°-∠C)
=50°.

点评 本题主要考查等腰三角形的性质和三角形内角和定理,根据等边对等角和三角形内角和定理,找到∠B、∠C和∠EDF的关系是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网