题目内容
16.下列各式计算正确的是( )| A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | 2$\sqrt{2}$-$\sqrt{2}$=$\sqrt{2}$ | C. | $\sqrt{(-4)×(-9)}$=$\sqrt{-4}$×$\sqrt{-9}$ | D. | $\sqrt{6}$÷$\sqrt{3}$=$\sqrt{3}$ |
分析 根据二次根式的加减法则对A、B进行判断,根据二次根式的性质对C进行判断,根据二次根式的除法法则对D进行判断.
解答 解:A、$\sqrt{2}$与$\sqrt{3}$不是同类项,不能合并,故本选项错误;
B、2$\sqrt{2}$-$\sqrt{2}$=$\sqrt{2}$,故本选项正确;
C、$\sqrt{(-4)×(-9)}$=$\sqrt{4×9}$,故故本选项错误;
D、$\sqrt{6}$$÷\sqrt{3}$=$\sqrt{2}$,故本选项错误.
故选B.
点评 本题考查的是二次根式的混合运算,熟练掌握加减乘除法则和二次根式的性质是解答此题的关键.
练习册系列答案
相关题目
1.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)
(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
| 摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
| 摸到白球的次数m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
| 摸到白球的频率$\frac{m}{n}$ | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
6.下列分式是最简分式的是( )
| A. | $\frac{1-x}{x-1}$ | B. | $\frac{{x}^{2}-1}{{x}^{2}+2x+1}$ | C. | $\frac{x-y}{{x}^{2}+{y}^{2}}$ | D. | -$\frac{13{m}^{2}}{2m}$ |