题目内容

6.如图,在正方形ABCD中,E、F分别为AB、BC上的点,且AE=BF,连结DE、AF,猜想DE、AF的关系并证明.

分析 先根据正方形的性质得AB=AD=BC,∠DAB=∠B=90°,则可利用“SAS”判定△DAE≌△ABF,得到DE=AF,∠1=∠2,由于∠1+∠AED=90°,所以∠2+∠AED=90°,根据三角形内角和得到∠AOE=90°,于是得到DE⊥AF.

解答 猜想:DE=AF且DE⊥AF.
证明:∵四边形ABCD是正方形,
∴AB=AD=BC,∠DAB=∠B=90°,
在△DAE和△ABF中,
$\left\{\begin{array}{l}{AD=BD}\\{∠DAE=∠B}\\{AE=BF}\end{array}\right.$,
∴△DAE≌△ABF(SAS),
∴DE=AF,∠1=∠2.
又∵∠1+∠AED=90°,
∴∠2+∠AED=90°,
∵∠AOE+∠2+∠AED=180°,
∴∠AOE=90°,
∴DE⊥AF,
即DE=AF且DE⊥AF.

点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网