ÌâÄ¿ÄÚÈÝ
13£®£¨1£©ÏÈÔĶÁ£¬ÔÙÌî¿Õ£º£¨x+5£©£¨x+6£©=x2+11x+30£»
£¨x-5£©£¨x-6£©=x2-11x+30£»
£¨x-5£©£¨x+6£©=x2+x-30£»
£¨x+5£©£¨x-6£©=x2-x-30£®
¹Û²ìÉÏÃæµÄËãʽ£¬¸ù¾Ý¹æÂÉ£¬Ö±½Óд³öÏÂÁи÷ʽµÄ½á¹û£º
£¨a+90£©£¨a-100£©=a2-10a-9000£» £¨y-80£©£¨y-90£©=y2-170y+7200£®
£¨2£©ÏÈÔĶÁ£¬ÔÙÌî¿Õ£º£¨x-1£©£¨x+1£©=x2-1£»£¨x-1£©£¨x2+x+1£©=x3-1£»£¨x-1£©£¨x3+x2+x+1£©=x4-1£»£¨x-1£©£¨x4+x3+x2+x+1£©=x5-1£®
¹Û²ìÉÏÃæ¸÷ʽ£º¢ÙÓɴ˹éÄɳöÒ»°ãÐÔ¹æÂÉ£º£¨x-1£©£¨xn-1+xn-2+xn-3+¡+x2+x+1£©=xn-1£»
¢Ú¸ù¾Ý¢ÙÖ±½Óд³ö1+3+32+¡+367+368µÄ½á¹û$\frac{{3}^{69}-1}{2}$£®
·ÖÎö £¨1£©¸ù¾Ý£¨x+p£©£¨x+q£©=x2+£¨p+q£©x+pq¿ÉµÃ£»
£¨2£©¢ÙÓÉÒÑÖªµÈʽ¿ÉµÃ£¨x-1£©£¨xn-1+xn-2+xn-3+¡+x2+x+1£©=xn-1£»¢Ú½«Ôʽ±äÐÎΪ$\frac{1}{2}$¡Á£¨3-1£©¡Á£¨1+3+32+¡+367+368£©£¬ÔÙÀûÓâÙÖÐËùµÃ¹æÂÉÇó½â¿ÉµÃ£®
½â´ð ½â£º£¨1£©¡ß£¨x+5£©£¨x+6£©=x2+£¨5+6£©x+5¡Á6=x2+11x+30£»
£¨x-5£©£¨x-6£©=x2+£¨-5-6£©x+£¨-5£©¡Á£¨-6£©=x2-11x+30£»
£¨x-5£©£¨x+6£©=x2+£¨-5+6£©x+£¨-5£©¡Á6=x2+x-30£»
£¨x+5£©£¨x-6£©=x2+£¨5-6£©x+5¡Á£¨-6£©=x2-x-30£¬
¡à£¨a+90£©£¨a-100£©=a2+£¨90-100£©a+90¡Á£¨-100£©=a2-10a-9000£¬
£¨y-80£©£¨y-90£©=y2+£¨-80-90£©y+£¨-80£©¡Á£¨-90£©=y2-170y+7200£¬
¹Ê´ð°¸Îª£ºa2-10a-9000£¬y2-170y+7200£®
£¨2£©¢ÙÓÉÌâÒâÖª£¬£¨x-1£©£¨xn-1+xn-2+xn-3+¡+x2+x+1£©=xn-1£¬
¹Ê´ð°¸Îª£ºxn-1£»
¢ÚÔʽ=$\frac{1}{2}$¡Á£¨3-1£©¡Á£¨1+3+32+¡+367+368£©=$\frac{1}{2}$¡Á£¨369-1£©£¬
¹Ê´ð°¸Îª£º$\frac{{3}^{69}-1}{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÊý×ֵı仯¹æÂÉ£¬¸ù¾ÝÒÑÖªµÈʽµÃ³öÒ»°ã¹æÂÉÊǽâÌâµÄ¹Ø¼ü£®
¢Ù×ó¡¢ÓÒÁ½¸ö¼¸ºÎÌåµÄÖ÷ÊÓͼÏàͬ
¢Ú×ó¡¢ÓÒÁ½¸ö¼¸ºÎÌåµÄ¸©ÊÓͼÏàͬ
¢Û×ó¡¢ÓÒÁ½¸ö¼¸ºÎÌåµÄ×óÊÓͼÏàͬ£®
| A£® | ¢Ù¢Ú¢Û | B£® | ¢Ú¢Û | C£® | ¢Ù¢Ú | D£® | ¢Ù¢Û |