题目内容

如图,在四边形ABCD中,P是BC边上一点,∠A=∠B=90º,E为AB的中点,连接DP,EP.若FG为△DPE的中位线,AB=AD=4,则FG=___________.

【解析】∵点E是AB的中点,AB=4, ∴AE=AB=2. ∵∠A=90°, ∴DE=. ∵FG是△EDP的中位线, ∴FG=ED=.
练习册系列答案
相关题目

当k=____________时,方程=2-会产生增根.

3 【解析】=2-,去分母得: ,当x=2时,k=3. 故答案:3.

计算﹣的结果为(  )

A. ﹣ B. ﹣ C. ﹣ D. ﹣n

A 【解析】【解析】 原式= .故选A.

某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶元,则可列出方程为( )

A. B.

C. D.

B 【解析】设原价每瓶x元,根据某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,可列方程. 【解析】 设原价每瓶x元, =20. 故选B.

如图,在△ABC中,∠BAC=90º,延长BA到点D,使AD=AB,E,F分别是边BC,AC的中点,试猜想DF与EC的数量关系,并证明你的猜想.

见解析 【解析】试题分析:由直角三角形的性质和三角形中位线定理得出AE=BC=EC,EF∥AB,EF= AB,得出AD∥EF,AD=EF,证出四边形AEFD是平行四边形,得出AE=DF,即可得出结论. 【解析】 DF=EC;理由如下: 连接AE,如图所示: ∵∠BAC=90°,E,F分别是边BC,AC的中点, ∴AE=BC=EC,E...

如图,某小区有一块平行四边形的花坛,分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是( )

A. 红花、绿花种植面积一定相等 B. 紫花、橙花种植面积一定相等

C. 红花、蓝花种植面积一定相等 D. 蓝花、黄花种植面积一定相等

C 【解析】∵AB∥EF∥DC,BC∥GH∥AD, ∴GH、BD、EF把一个平行四边形分割成四个小平行四边形, ∴一条对角线可以把一个平行四变形的面积一分为二, 据此可从图中获得S黄=S蓝,S绿=S红,S(紫+黄+绿)=S(橙+红+蓝), 根据等量相减原理知S紫=S橙, ∴A、B、D说法正确, 再考查S红与S蓝显然不相等. 故选C.

如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )

A. 18 B. 28 C. 36 D. 46

C 【解析】试题分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体. 【解析】 ∵四边形ABCD是平行四边形, ∴AB=CD=5, ∵△OCD的周长为23, ∴OD+OC=23﹣5=18, ∵BD=2DO,AC=2OC, ∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=...

若分式 的值为0,则x的值等于___________

-1 【解析】试题分析:因为当时分式的值为零,解得且,所以x=1.

如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.

求证:AF平分∠BAC.

证明见解析. 【解析】试题分析:先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC. 试题解析:证明:∵AB=AC(已知), ∴∠ABC=∠ACB(等边对等角). ∵BD、CE分别是高, ∴...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网