ÌâÄ¿ÄÚÈÝ
3£®£¨1£©ÇóµãCµÄ×ø±ê£¬²¢Çó³öÅ×ÎïÏߵĺ¯Êý½âÎöʽ£»
£¨2£©Å×ÎïÏߵĶԳÆÖá±»Ö±Ïßl1¡¢Å×ÎïÏß¡¢Ö±Ïßl2ºÍxÖáÒÀ´Î½ØµÃÈýÌõÏ߶Σ¬ÎÊ£ºÕâÈýÌõÏß¶ÎÓкÎÊýÁ¿¹ØÏµ£¿Çë˵Ã÷ÀíÓÉ£®
£¨3£©µ±Ö±Ïßl2ÈÆµãCÐýתʱ£¬ÓëÅ×ÎïÏßµÄÁíÒ»¸ö½»µãΪM£¬ÇëÕÒ³öʹ¡÷MCKΪµÈÑüÈý½ÇÐεĵãM£¬¼òÊöÀíÓÉ£¬²¢Ð´³öµãMµÄ×ø±ê£®
·ÖÎö £¨1£©ÀûÓá÷BOC¡×¡÷COA£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊÇóµÃOCµÄ³¤£¬ÔòCµÄ×ø±ê¼´¿ÉÇóµÃ£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóµÃ¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Ê×ÏÈÇóµÃl1£¬l2ºÍÅ×ÎïÏߵĶԳÆÖáµÄ½âÎöʽ£¬½ø¶øÇóµÃK¡¢D¡¢E¡¢F·Ö×ø±ê£¬ÔòDK¡¢DE¡¢ºÍEFµÄ¹ØÏµ¼´¿ÉÇóµÃ£»
£¨3£©·Ö³ÉK¡¢C¡¢M·Ö±ðÊǵÈÑüÈý½ÇÐεĶ¥µãÈýÖÖÇé¿ö½øÐÐÌÖÂÛ£¬¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊÇó½â£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃAO=1£¬BO=3£¬
¡ß¡÷BOC¡×¡÷COA£¬
¡à$\frac{CO}{BO}$=$\frac{AO}{CO}$£¬¼´$\frac{CO}{3}$=$\frac{1}{CO}$£¬
¡àCO=$\sqrt{3}$»ò-$\sqrt{3}$£¨ÉáÈ¥£©£®
¡àCµÄ×ø±êÊÇ£¨0£¬-$\sqrt{3}$£©£®
ÉèÅ×ÎïÏߵĽâÎöʽÊÇy=ax2+bx+c£¬
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{a-b-c=0}\\{9a+3b+c=0}\\{c=-\sqrt{3}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=\frac{\sqrt{3}}{3}}\\{b=-\frac{2\sqrt{3}}{3}}\\{c=-\sqrt{3}}\end{array}\right.$£¬
ÔòÅ×ÎïÏߵĽâÎöʽÊÇy=$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x-$\sqrt{3}$£»
£¨2£©ËùµÃµÄÈýÌõÏ߶εÄÊýÁ¿¹ØÏµÊÇKD=DE=EF£®
ÀíÓÉÊÇ£ºÉèÖ±Ïßl1µÄ½âÎöʽÊÇy=kx+b£¬
Ôò$\left\{\begin{array}{l}{-k+b=0}\\{b=-\sqrt{3}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\sqrt{3}}\\{b=-\sqrt{3}}\end{array}\right.$£¬
ÔòÖ±Ïßl1µÄ½âÎöʽÊÇy=-$\sqrt{3}$x-$\sqrt{3}$£®
ͬÀíl2µÄ½âÎöʽÊÇy=$\frac{\sqrt{3}}{3}$x-$\sqrt{3}$£®
Å×ÎïÏߵĶԳÆÖáÊÇx=1£¬
ÔòKµÄ×ø±êÊÇ£¨1£¬-2$\sqrt{3}$£©£¬DµÄ×ø±êÊÇ£¨1£¬-$\frac{4\sqrt{3}}{3}$£©£¬EµÄ×ø±êÊÇ£¨1£¬-$\frac{2\sqrt{3}}{3}$£©£¬FµÄ×ø±êÊÇ£¨1£¬0£©£®
ÔòKD=$\frac{2\sqrt{3}}{3}$£¬DE=$\frac{2\sqrt{3}}{3}$£¬EF=$\frac{2\sqrt{3}}{3}$£®![]()
ÔòKD=DE=EF£»
£¨3£©ÓÉÌâÒâÐè½øÐзÖÀàÌÖÂÛ£®
¢ÙÒÔKΪԲÐÄ£¬KCµÄ³¤Îª°ë¾¶»Ô²»¡£¬½»Å×ÎïÏßÓÚµãM1£¬´ËʱKM1=KC£¬ÔòM1ÓëC¹ØÓÚ¶Ô³ÆÖáx=1¶Ô³Æ£®
ÉèM1µÄºá×ø±êÊÇa£¬Ôò$\frac{1}{2}$a=1£¬½âµÃ£ºa=2£®
ÔòM1µÄ×ø±êÊÇ£¨2£¬-$\sqrt{3}$£©£»
¢Úµ±ÒÔµãCΪԲÐÄ£¬Ïß¶ÎKCµÄ³¤Îª°ë¾¶»Ô²»¡Ê±£¬ÓëÅ×ÎïÏߵĽ»µãM1ºÍA£¬¶øA¡¢C¡¢KÈýµãÔÚÒ»ÌõÖ±ÏßÉÏ£¬²»Äܹ¹³ÉÈý½ÇÐΣ»
¢Û×÷Ïß¶ÎKCµÄÖд¹Ïߣ¬
¡ßCD=$\sqrt{{1}^{2}+£¨-\sqrt{3}+\frac{4\sqrt{3}}{3}£©^{2}}$=$\frac{2\sqrt{3}}{3}$£¬
¡àCD=DK£®
¡àKCµÄÖд¹ÏßÒ»¶¨¾¹ýD£®
¼´´ËʱD¾ÍÊÇËùÇóµÄµãM2£®´ËʱÓеãM2£¬¼´µãM2µÄ×ø±êÊÇ£¨1£¬-$\frac{4\sqrt{3}}{3}$£©Ê¹µÃ¡÷M2CKÊǵÈÑüÈý½ÇÐΣ®
×ÛÉÏËùÊö£¬µ±µãMµÄ×ø±êÊÇ£¨2£¬-$\sqrt{3}$£©£¬£¨1£¬-$\frac{4\sqrt{3}}{3}$£©Ê±£¬¡÷MCKÊǵÈÑüÈý½ÇÐΣ®
µãÆÀ ±¾ÌâÊÇ´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢ÏàËÆÈý½ÇÐεÄÐÔÖÊÒÔ¼°µÈÑüÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬¶ÔµÈÑüÈý½ÇÐνøÐÐÌÖÂÛÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | 2x3+5x-1ºÍ-9x3-3x-3 | B£® | 5x3+x+8ºÍ-12x3+x-12 | ||
| C£® | -3x3+x+5ºÍ-4x3+x-1 | D£® | -7x3+3x-2ºÍ-x-2 |