题目内容

4.阅读下列解题过程:
$\frac{1}{\sqrt{2}+1}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)×(\sqrt{2}-1)}$=$\frac{\sqrt{2}-1}{(\sqrt{2})^{2}-{1}^{2}}$=$\sqrt{2}$-1;
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{1×(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}$=$\sqrt{3}$-$\sqrt{2}$
请回答下列问题:
(1)归纳:观察上面的解题过程,请直接写出下列各式的结果.
①$\frac{1}{\sqrt{7}+\sqrt{6}}$=$\sqrt{7}$-$\sqrt{6}$;②$\frac{1}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{n}$-$\sqrt{n-1}$;
(2)应用:求$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+$\frac{1}{\sqrt{5}+\sqrt{4}}$+…+$\frac{1}{\sqrt{10}+\sqrt{9}}$的值;
(3)拓广:$\frac{1}{\sqrt{3}-1}$-$\frac{1}{\sqrt{5}-\sqrt{3}}$+$\frac{1}{\sqrt{7}-\sqrt{5}}$-$\frac{1}{\sqrt{9}-\sqrt{7}}$=-1.

分析 (1)①直接利用找出分母有理化因式进而化简求出答案;
②直接利用找出分母有理化因式进而化简求出答案;
(2)直接利用找出分母有理化因式进而化简求出答案;
(3)直接利用找出分母有理化因式进而化简求出答案.

解答 解:(1)①$\frac{1}{\sqrt{7}+\sqrt{6}}$=$\frac{1×(\sqrt{7}-\sqrt{6})}{(\sqrt{7}+\sqrt{6})(\sqrt{7}-\sqrt{6})}$=$\sqrt{7}$-$\sqrt{6}$;
②$\frac{1}{\sqrt{n}+\sqrt{n-1}}$=$\frac{1×(\sqrt{n}-\sqrt{n-1})}{(\sqrt{n}+\sqrt{n-1})(\sqrt{n}-\sqrt{n-1})}$=$\sqrt{n}$-$\sqrt{n-1}$;
故答案为:$\sqrt{7}$-$\sqrt{6}$;$\sqrt{n}$-$\sqrt{n-1}$;

(2)$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+$\frac{1}{\sqrt{5}+\sqrt{4}}$+…+$\frac{1}{\sqrt{10}+\sqrt{9}}$
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+…+$\sqrt{10}$-$\sqrt{9}$
=$\sqrt{10}$-1;

(3)$\frac{1}{\sqrt{3}-1}$-$\frac{1}{\sqrt{5}-\sqrt{3}}$+$\frac{1}{\sqrt{7}-\sqrt{5}}$-$\frac{1}{\sqrt{9}-\sqrt{7}}$
=$\frac{\sqrt{3}+1}{(\sqrt{3}-1)(\sqrt{3}+1)}$-$\frac{\sqrt{5}+\sqrt{3}}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}$+$\frac{\sqrt{7}+\sqrt{5}}{(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})}$-$\frac{\sqrt{9}+\sqrt{7}}{(\sqrt{9}-\sqrt{7})(\sqrt{9}+\sqrt{7})}$
=$\frac{\sqrt{3}+1}{2}$-$\frac{\sqrt{5}+\sqrt{3}}{2}$+$\frac{\sqrt{7}+\sqrt{5}}{2}$-$\frac{\sqrt{9}+\sqrt{7}}{2}$
=$\frac{\sqrt{3}+1-\sqrt{5}-\sqrt{3}+\sqrt{7}+\sqrt{5}-\sqrt{9}-\sqrt{7}}{2}$
=-1.
故答案为:-1.

点评 此题主要考查了分母有理化,正确找出分母有理化因式是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网