ÌâÄ¿ÄÚÈÝ
5£®£¨1£©Âý³µµÄÐÐÊ»ËÙ¶ÈÊÇ60ǧÃ×/Сʱ£¬aµÄÖµÊÇ360£¬¿ì³µµÄÐÐÊ»ËÙ¶ÈÊÇ120ǧÃ×/Сʱ£»
£¨2£©Á½³µ³ö·¢¶à³¤Ê±¼äµÚÒ»´ÎÏàÓö£¿
£¨Ìáʾ£ºÑ¡Óó£¼ûÐгÌÓ¦ÓÃÌâµÄ½â¾ö°ì·¨À´½â¾ö´ËÎÊÌâ±È½Ï¼òµ¥£©
·ÖÎö £¨1£©¸ù¾Ýº¯ÊýͼÏóºÍÌâÒâ¿ÉÒÔÇóµÃÂý³µµÄÐÐÊ»ËÙ¶È¡¢aµÄÖµºÍ¿ì³µµÄÐÐÊ»ËÙ¶È£»
£¨2£©¸ù¾Ý£¨1£©ÖеĴ𰸿ÉÒÔÁ½³µµÚÒ»´ÎÏàÓöËüÃǵÄÐгÌÖ®ºÍÕýºÃÊÇ480ǧÃ×£¬´Ó¶ø¿ÉÒÔ½â´ð±¾Ì⣮
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬
Âý³µµÄËÙ¶ÈÊÇ£º480¡Â£¨9-1£©=60ǧÃ×/ʱ£¬a=60¡Á£¨7-1£©=360£¬¿ì³µµÄËÙ¶ÈΪ£º£¨480+360£©¡Â7=120ǧÃ×/ʱ£¬
¹Ê´ð°¸Îª£º60£¬360£¬120£»
£¨2£©ÉèÁ½³µ¾¹ýtСʱµÚÒ»´ÎÏàÓö£¬
£¨120+60£©t=480£¬
½âµÃ£¬t=$\frac{8}{3}$£¬
´ð£ºÁ½³µ³ö·¢$\frac{8}{3}$СʱÁ½³µµÚÒ»´ÎÏàÓö£®
µãÆÀ ±¾Ì⿼²éÒ»´Îº¯ÊýµÄÓ¦Ó㬽â´ð±¾ÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£¬ÀûÓÃÊýÐνáºÏµÄ˼ÏëºÍÒ»´Îº¯ÊýµÄÐÔÖʽâ´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®ÏÂÁз½³ÌÖÐÊÇÒ»Ôª¶þ´Î·½³ÌµÄÊÇ£¨¡¡¡¡£©
| A£® | ax2+bx+c=0 | B£® | -2x2=0 | C£® | 2x£¨x-1£©=2x2+3 | D£® | 3x+$\frac{1}{x}$=4 |
20£®ÒÑÖªº¯Êýy=-kx£¨k¡Ù0£©µÄͼÏó¾¹ýµÚÒ»¡¢ÈýÏóÏÞ£¬£¨-2£¬y1£©¡¢£¨-1£¬y2£©¡¢£¨2£¬y3£©ÊǺ¯Êýy=£¨2k-9£©x-1ͼÏóÉϵÄÈý¸öµã£¬Ôòy1¡¢y2¡¢y3µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| A£® | y2£¼y3£¼y1 | B£® | y1£¼y2£¼y3 | C£® | y3£¼y1£¼y2 | D£® | y3£¼y2£¼y1 |
17£®¶ÔÓÚ$\sqrt{25}$£¬$\sqrt{2}$¡Á$\sqrt{5}$£¬£¨2$\sqrt{5}$£©2£¬$\sqrt{2}$¡Â$\sqrt{5}$ÕâËĸöËãʽ£¬ÇóÖµ½á¹û×î´óµÄÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{25}$ | B£® | $\sqrt{2}$¡Á$\sqrt{5}$ | C£® | £¨2$\sqrt{5}$£©2 | D£® | $\sqrt{2}$¡Â$\sqrt{5}$ |