题目内容

13.如图,平行四边形ABCD中,F是AD边上一点,延长BF、CD交于点E.
(1)求证:△ABF∽△DEF;
(2)若$DE=\frac{1}{2}CD$,S△DEF=2,求平行四边形ABCD的面积.

分析 (1)根据平行四边形对角相等可得∠A=∠D,对边平行可得AB∥CD,根据两直线平行,内错角相等得到∠ABF=∠E,然后利用两角对应相等,两三角形相似即可证明.
(2)由$DE=\frac{1}{2}CD$,可知$\frac{DE}{AB}=\frac{1}{2}$,$\frac{DE}{EC}=\frac{1}{3}$,易知△ABF∽△DEF,△CEB∽△DEF,根据相似三角形的面积比等于相似比的平方,求出△ABF和△BCE的面积即可求出平行四边形ABCD的面积.

解答 解:(1)∵四边形ABCD是平行四边形,
∴∠A=∠D,AB∥CD,
∴∠ABF=∠E,
在△ABF和△DEF中,
∠A=∠D,∠ABF=∠E,
∴△ABF∽△CEB.
(2)∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴△ABF∽△DEF,△CEB∽△DEF,
∵$DE=\frac{1}{2}CD$,
∴$\frac{DE}{AB}=\frac{1}{2}$,$\frac{DE}{EC}=\frac{1}{3}$,
∴$\frac{{S}_{△DEF}}{{S}_{△ABF}}$=$\frac{1}{4}$,$\frac{{S}_{△DEF}}{{S}_{△CEB}}$=$\frac{1}{9}$
∵S△DEF=2,
∴S△ABF=8,S△CEB=18,
∴S四边形BCDF=S△CEB-S△DEF=18-2=16.
∴S平行四边形ABCD=S△ABF+S四边形BCDF=8+16=24.

点评 本题主要考查了平行四边形的性质,相似三角形的判定和性质,熟悉相似三角形的性质和判定是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网