题目内容

13.如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.
求:(1)折叠后DE的长;
(2)以折痕EF为边的正方形面积.

分析 (1)设DE长为xcm,则AE=(9-x)cm,BE=xcm,根据勾股定理得出AE2+AB2=BE2,即(9-x)2+32=x2,解方程求出x,即可得出DE的长;
(2)连接BD,作EG⊥BC于G,则四边形ABGE是矩形,∠EGF=90°,得出EG=AB=3,BG=AE=4,得出GF=1,由勾股定理求出EF2,即可得出以EF为边的正方形面积.

解答 解:(1)设DE长为xcm,则AE=(9-x)cm,BE=xcm,
∵四边形ABCD是矩形,
∴∠A=90°,
根据勾股定理得:AE2+AB2=BE2
即(9-x)2+32=x2
解得:x=5,
即DE长为5cm,
(2)作EG⊥BC于G,如图所示:
则四边形ABGE是矩形,∠EGF=90°,
∴EG=AB=3,BG=AE=4,
∴GF=1,
∴EF2=EG2+GF2=32+12=10,
∴以EF为边的正方形面积为EF2=10cm2

点评 本题考查了矩形的性质、翻折变换、勾股定理以及正方形的面积;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网