题目内容
解下列方程组
(1)
(2)
(3)
(4)
.
(1)
|
(2)
|
(3)
|
(4)
|
考点:解二元一次方程组
专题:计算题
分析:(1)先利用①-②×2求出x,然后利用代入法求y;
(2)先利用①×5-②×3求出x,然后利用代入法求y;
(3)先利用①×2+②求出x,然后利用代入法求y;
(4)先整理得到
,再利用①+②求出x,然后利用代入法求y.
(2)先利用①×5-②×3求出x,然后利用代入法求y;
(3)先利用①×2+②求出x,然后利用代入法求y;
(4)先整理得到
|
解答:解:(1)
,
①-②×2得7x=7,
解得x=1,
把x=1代入①得1+2y=9,
解得y=4,
所以方程组的解为
;
(2)
,
①×5-②×3得35x-12x=-5+51,
解得x=2,
把x=2代入①得14-3y=-1,
解得y=5,
所以方程组的解为
;
(3)
,
①×2+②得
+
=7,
解得x=6,
把x=6代入①得2+
=3,
解得y=5,
所以方程组的解为
;
(4)原方程组整理为
,
①+②得4x=12,
解得x=3,
把x=3代入①得3+4y=14,
解得y=
,
所以原方程组的解为
.
|
①-②×2得7x=7,
解得x=1,
把x=1代入①得1+2y=9,
解得y=4,
所以方程组的解为
|
(2)
|
①×5-②×3得35x-12x=-5+51,
解得x=2,
把x=2代入①得14-3y=-1,
解得y=5,
所以方程组的解为
|
(3)
|
①×2+②得
| 2x |
| 3 |
| x |
| 2 |
解得x=6,
把x=6代入①得2+
| y |
| 5 |
解得y=5,
所以方程组的解为
|
(4)原方程组整理为
|
①+②得4x=12,
解得x=3,
把x=3代入①得3+4y=14,
解得y=
| 11 |
| 4 |
所以原方程组的解为
|
点评:本题考查了解二元一次方程组:利用加减消元法或代入消元法把解方程组的问题转化为解一元一次方程的问题.
练习册系列答案
相关题目