题目内容
12.(1)若BD平分∠ABE,求证:DE2=DF•DB;
(2)填空:在(1)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,则PD的长为4,⊙O的半径为2$\sqrt{2}$.
分析 (1)通过证得△DEF∽△DBE,得出相似三角形的对应边成比例即可证得结论.
(2)连接DA、DO,先证得OD∥BE,得出$\frac{PD}{PE}=\frac{PO}{PB}$,然后根据已知条件得出$\frac{PO}{PB}=\frac{PD}{PE}$=$\frac{PD}{PD+DE}$=$\frac{2}{3}$,求得PD=4,通过证得△PDA∽△POD,得出$\frac{PD}{PO}=\frac{PA}{PD}$,设OA=x,则PA=x,PO=2x,得出$\frac{4}{2x}$=$\frac{x}{4}$,解得OA=2$\sqrt{2}$.
解答 (1)证明:∵BD平分∠ABE,
∴∠ABD=∠DBE,$\widehat{AD}$=$\widehat{DE}$,
∴∠DEA=∠DBE,
∵∠EDB=∠BDE,
∴△DEF∽△DBE,
∴$\frac{DE}{DB}=\frac{DF}{DE}$,
∴DE2=DF•DB;
(2)
解:连接DA、DO,
∵OD=OB,
∴∠ODB=∠OBD,
∵∠EBD=∠OBD,
∴∠EBD=∠ODB,
∴OD∥BE,
∴$\frac{PD}{PE}=\frac{PO}{PB}$,
∵PA=AO,
∴PA=AO=OB,
∴$\frac{PO}{PB}$=$\frac{2}{3}$,
∴$\frac{PD}{PE}$=$\frac{2}{3}$,
∴$\frac{PD}{PD+DE}$=$\frac{2}{3}$,
∵DE=2,
∴PD=4,
∵∠PDA+∠ADE=180°,∠ABE+∠ADE=180°,
∴∠PDA=∠ABE,
∵OD∥BE,
∴∠AOD=∠ABE,
∴∠PDA=∠AOD,
∵∠P=∠P,
∴△PDA∽△POD,
∴$\frac{PD}{PO}$=$\frac{PA}{PD}$,
设OA=x,
∴PA=x,PO=2x,
∴$\frac{4}{2x}$=$\frac{x}{4}$,
∴2x2=16,x=2$\sqrt{2}$,
∴OA=2$\sqrt{2}$,
故答案为:4,2$\sqrt{2}$.
点评 本题考查了切线的判定,三角形相似的判定和性质;要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
| 湖产品种类 | A类 | B类 | C类 |
| 每辆汽车装载吨数 | 2 | 1 | 1.5 |
| 每吨湖产品可获利润(万元) | 5 | 7 | 4 |
(1)设装A类湖产品用x辆汽车,装B类湖产品用y辆汽车,装C类湖产品用z辆汽车.请用含z的式子表示x,y.
(2)如果本次销售公司获得利润为w万元,那么如何安排装运,可使w最大,最大是多少万元?
| A. | $\frac{1}{2}$cm | B. | 1cm | C. | $\frac{3}{2}$cm | D. | 2cm |