ÌâÄ¿ÄÚÈÝ
5£®²Ù×÷̽¾¿£ºÒÑÖª¾ØÐÎABCDÖУ¬AB=4£¬BC=5£¬µãEºÍF·Ö±ðÊÇADºÍABÉÏÒ»¶¯µã£¬ÕÛµþ¾ØÐÎABCD£¬µãA1ΪµãAµÄ¶ÔÓ¦µã£®£¨1£©Èçͼ1£¬ÑØÖ±ÏßEFÕÛµþ¾ØÐÎABCD£¬µãA1ÊǾØÐÎABCDÄÚÒ»µã£¬Çë×÷³ö¡÷A1EF£¨ÒªÇ󣺳߹æ×÷ͼ£¬±£Áô×÷ͼºÛ¼££¬²»Ð´×÷·¨£©£®
£¨2£©Èçͼ2£¬ÑØÖ±ÏßBEÕÛµþ¾ØÐÎABCD£¬µ±AµÄ¶ÔÓ¦µãA1Ç¡ºÃÂäÔÚ¡ÏBCDµÄƽ·ÖÏßÉÏʱ£¬ÇóCA1µÄ³¤£®
ÍØÕ¹ÑÓÉ죺
£¨3£©È¥µô¡°BC=5¡±µÄÌõ¼þ£¬ÈôÑØÖ±ÏßBEÕÛµþ¾ØÐκó£¬ÂäÔÚ¡ÏBCDƽ·ÖÏßÉϵĵãA1ÓÐÇÒÖ»ÓÐÒ»¸öʱ£¬Çó¾ØÐεÄÃæ»ý£®
£¨4£©°Ñ¾ØÐÎABCDÑØÖ±ÏßEFÕÛµþºó£¬µãAµÄ¶ÔÓ¦µãA1ÂäÔÚ¾ØÐÎABCDÄÚ£¨²»°üÀ¨±ßÔµ²¿·Ö£©£¬Ö±½Óд³öDA1µÄ×îСֵ£®
·ÖÎö £¨1£©·Ö±ðÒÔAºÍA1ΪԲÐÄ£¬´óÓÚAA1³¤µÄÒ»°ëΪ°ë¾¶»»¡£¬Á½»¡½»ÓÚM£¬NÁ½µã£¬×÷Ö±ÏßMN£¬½»ADÓÚE£¬½»ABÓÚF£¬Á¬½ÓA1EºÍA1F£¬Ôò¡÷A1EF¼´ÎªËùÇó£»
£¨2£©¹ýµãA1×÷A1F¡ÍBCÓÚF£¬ÉèA1F=CF=x£¬ÔòBF=5-x£¬ÔÚRt¡÷A1BFÖУ¬¸ù¾Ý¹´¹É¶¨ÀíµÃ³öA1F2+BF2=A1B2£¬½ø¶øµÃµ½x2+£¨5-x£©2=42£¬ÇóµÃCF=$\frac{5+\sqrt{7}}{2}$»ò$\frac{5-\sqrt{7}}{2}$£¬×îºóÔÚÔÚµÈÑüRt¡÷A1CFÖУ¬ÇóµÃCA1¼´¿É£»
£¨3£©¹ýµãB×÷¡ÏBCDµÄƽ·ÖÏߵĴ¹Ïߣ¬µ±µãA1ÂäÔÚ´¹×ãÉÏʱ£¬µãA1ÓÐÇÒÖ»ÓÐÒ»¸ö£¬¸ù¾Ý¡÷A1BCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬µÃµ½A1B=A1C=4£¬ÇóµÃBC=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$£¬¾Ý´ËÇóµÃ¾ØÐεÄÃæ»ý£»
£¨4£©¸ù¾ÝÁ½µãÖ®¼äÏß¶Î×î¶Ì£¬ÒÔ¼°A1B=AB=4¿ÉµÃ£¬µ±µãB£¬A1£¬DÈýµã¹²Ïßʱ£¬A1D×î¶Ì£¬ÔÚRt¡÷ABDÖУ¬¸ù¾Ý¹´¹É¶¨ÀíÇóµÃBDµÄ³¤£¬¼´¿ÉµÃµ½DA1µÄ×îСֵ£®
½â´ð ½â£º£¨1£©Èçͼ1Ëùʾ£¬·Ö±ðÒÔAºÍA1ΪԲÐÄ£¬´óÓÚAA1³¤µÄÒ»°ëΪ°ë¾¶»»¡£¬Á½»¡½»ÓÚM£¬NÁ½µã£¬×÷Ö±ÏßMN£¬½»ADÓÚE£¬½»ABÓÚF£¬Á¬½ÓA1EºÍA1F£¬Ôò¡÷A1EF¼´ÎªËùÇó£»![]()
£¨2£©Èçͼ2Ëùʾ£¬¹ýµãA1×÷A1F¡ÍBCÓÚF£¬![]()
¡ßµãA1ÂäÔÚ¡ÏBCDµÄƽ·ÖÏßÉÏ£¬
¡à¡ÏBCA1=45¡ã£¬
¡à¡÷A1CFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
ÉèA1F=CF=x£¬ÔòBF=5-x£¬
ÓÉÕÛµþ¿ÉµÃ£¬A1B=AB=4£¬
¡àRt¡÷A1BFÖУ¬A1F2+BF2=A1B2£¬
¼´x2+£¨5-x£©2=42£¬
½âµÃx1=$\frac{5+\sqrt{7}}{2}$£¬x2=$\frac{5-\sqrt{7}}{2}$£¬
¼´CF=$\frac{5+\sqrt{7}}{2}$»ò$\frac{5-\sqrt{7}}{2}$£¬
¡àÔÚµÈÑüRt¡÷A1CFÖУ¬CA1=$\sqrt{2}$CF=$\frac{5}{2}\sqrt{2}$+$\frac{\sqrt{14}}{2}$»ò$\frac{5}{2}\sqrt{2}$-$\frac{\sqrt{14}}{2}$£»
£¨3£©Èçͼ3Ëùʾ£¬¹ýµãB×÷¡ÏBCDµÄƽ·ÖÏߵĴ¹Ïߣ¬µ±µãA1ÂäÔÚ´¹×ãÉÏʱ£¬µãA1ÓÐÇÒÖ»ÓÐÒ»¸ö£¬![]()
´Ëʱ£¬¡÷A1BCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àA1B=A1C=4£¬
¡àBC=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$£¬
¡à¾ØÐεÄÃæ»ý=4¡Á4$\sqrt{2}$=16$\sqrt{2}$£»
£¨4£©Èçͼ4Ëùʾ£¬¸ù¾ÝÁ½µãÖ®¼äÏß¶Î×î¶Ì£¬ÒÔ¼°A1B=AB=4¿ÉµÃ£¬
µ±µãB£¬A1£¬DÈýµã¹²Ïßʱ£¬A1D×î¶Ì£¬![]()
´Ëʱ£¬Rt¡÷ABDÖУ¬BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{4}^{2}+{5}^{2}}$=$\sqrt{41}$£¬
¡àA1D=$\sqrt{41}$-4£¬
¼´DA1µÄ×îСֵΪ$\sqrt{41}$-4£®
µãÆÀ ±¾ÌâÊôÓÚËıßÐÎ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁ˾ØÐεÄÐÔÖÊ£¬µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬Öá¶Ô³ÆµÄÐÔÖÊ£¬½âÒ»Ôª¶þ´Î·½³ÌÒÔ¼°¹´¹É¶¨ÀíµÄ×ÛºÏÓ¦Ó㬽â¾öÎÊÌâµÄ¹Ø¼üÊÇÕÆÎÕ£ºÕÛµþÊÇÒ»ÖֶԳƱ任£¬ËüÊôÓÚÖá¶Ô³Æ£¬ÕÛµþǰºóͼÐεÄÐÎ×´ºÍ´óС²»±ä£¬Î»Öñ仯£¬¶ÔÓ¦±ßºÍ¶ÔÓ¦½ÇÏàµÈ£®½âÌâʱעÒ⣺ÉèÒªÇóµÄÏ߶γ¤Îªx£¬È»ºó¸ù¾ÝÕÛµþºÍÖá¶Ô³ÆµÄÐÔÖÊÓú¬xµÄ´úÊýʽ±íʾÆäËûÏ߶εij¤¶È£¬Ñ¡ÔñÊʵ±µÄÖ±½ÇÈý½ÇÐΣ¬ÔËÓù´¹É¶¨ÀíÁгö·½³Ì¼´¿ÉÇó³ö´ð°¸£®