题目内容

7.如图,有一张长为8cm,宽为7cm的矩形纸片ABCD,现要剪下一个腰长为6cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为18或3$\sqrt{35}$或12$\sqrt{2}$cm2

分析 因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:
(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;
(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;
(3)先求出AE边上的高DF,再代入面积公式求解.

解答 解:分三种情况计算:
(1)当AE=AF=6时,如图:

∴S△AEF=$\frac{1}{2}$AE•AF=$\frac{1}{2}$×6×6=18(cm2);
(2)当AE=EF=6时,如图:

则BE=7-6=1,
BF=$\sqrt{E{F}^{2}-B{E}^{2}}$=$\sqrt{{6}^{2}-{1}^{2}}$=$\sqrt{35}$,
∴S△AEF=$\frac{1}{2}$•AE•BF=$\frac{1}{2}$×6×$\sqrt{35}$=3$\sqrt{35}$(cm2);
(3)当AE=EF=6时,如图:

则DE=8-6=2,
DF=$\sqrt{E{F}^{2}-D{E}^{2}}$=$\sqrt{{6}^{2}-{2}^{2}}$=4$\sqrt{2}$,
∴S△AEF=$\frac{1}{2}$AE•DF=$\frac{1}{2}$×6×4$\sqrt{2}$=12$\sqrt{2}$(cm2);
故答案为:18或3$\sqrt{35}$或12$\sqrt{2}$.

点评 本题主要考查了勾股定理的运用,矩形的性质,三角形的面积,要根据三角形的腰长的不确定分情况讨论,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网