题目内容
17.已知:如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求证:∠EGF=90°.
证明:∵HG∥AB,HG∥CD (已知);
∴∠1=∠3
∴∠2=∠4两直线平行,内错角相等.
∵AB∥CD(已知);
∴∠BEF+∠EFD=180°两直线平行,同旁内角互补.
又∵EG平分∠BEF,FG平分∠EFD(已知)
∴∠1=$\frac{1}{2}$∠角平分线的定义
∠2=$\frac{1}{2}$∠EFD.
∴∠1+∠2=$\frac{1}{2}$(∠BEF+∠EFD).
∴∠1+∠2=90°;
∴∠3+∠4=90°,即∠EGF=90°.
分析 此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,FG平分∠EFD得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.
解答 证明:∵HG∥AB(已知),
∴∠1=∠3,
又∵HG∥CD(已知),
∴∠2=∠4(两直线平行,内错角相等),
∵AB∥CD(已知),
∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补),
又∵EG平分∠BEF(已知),
∴∠1=$\frac{1}{2}$∠BEF(角平分线的定义),
又∵FG平分∠EFD(已知),
∴∠2=$\frac{1}{2}$∠EFD(角平分线的定义),
∴∠1+∠2=$\frac{1}{2}$(∠BEF+∠EFD),
∴∠1+∠2=90°,
∴∠3+∠4=90°(等量代换)
即∠EGF=90°.
故答案为:两直线平行,内错角相等,∠EFD,两直线平行,同旁内角互补,角平分线的定义,EFD,∠BEF.
点评 本题考查了平行线的性质及角平分线的定义,找到相应关系的角是解决问题的关键.
练习册系列答案
相关题目
12.
如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于( )
| A. | 5 | B. | 10 | C. | 15 | D. | 20 |
6.
如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=$\frac{2}{x}$(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P3A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{5}$ |
7.下列多边形中,能够铺满地面的是( )
| A. | 正方形 | B. | 正五边形 | C. | 正七边形 | D. | 正八边形 |