ÌâÄ¿ÄÚÈÝ
20£®³£ÓõķֽâÒòʽµÄ·½·¨ÓÐÌáÈ¡¹«Òòʽ·¨¡¢¹«Ê½·¨£¬µ«Óиü¶àµÄ¶àÏîʽֻÓÃÉÏÊö·½·¨¾ÍÎÞ·¨·Ö½â£¬Èçx2-4y2-2x+4y£¬ÎÒÃÇϸÐĹ۲ìÕâ¸öʽ×ӾͻᷢÏÖ£¬Ç°Á½Ïî·ûºÏƽ·½²î¹«Ê½£¬ºóÁ½Ïî¿ÉÌáÈ¡¹«Òòʽ£¬Ç°ºóÁ½²¿·Ö·Ö±ð·Ö½âÒòʽºó»á²úÉú¹«Òòʽ£¬È»ºóÌáÈ¡¹«Òòʽ¾Í¿ÉÒÔÍê³ÉÕû¸öʽ×ӵķֽâÒòʽÁË£¬¹ý³ÌΪ£ºx2-4y2-2x+4y=£¨x+2y£©£¨x-2y£©-2£¨x-2y£©=£¨x-2y£©£¨x+2y-2£©£¬ÕâÖÖ·Ö½âÒòʽµÄ·½·¨½Ð·Ö×é·Ö½â·¨£¬ÀûÓÃÕâÖÖ·½·¨½â¾öÏÂÁÐÎÊÌ⣮£¨1£©·Ö½âÒòʽ£ºx2+2xy+y2£»
£¨2£©·Ö½âÒòʽ£ºa2-9-2ab+b2£»
£¨3£©¡÷ABCÈý±ßa¡¢b¡¢cÂú×ãa2-4bc+4ac-ab=0£¬Åжϡ÷ABCµÄÐÎ×´£®
·ÖÎö £¨1£©ÀûÓÃÍêȫƽ·½¹«Ê½·Ö½âµÃ³ö¼´¿É£»
£¨2£©Ê×ÏȽ«µÚÒ»¡¢Èý¡¢ËÄÏî×éºÏ£¬ÀûÓÃÍêȫƽ·½¹«Ê½·Ö½âÒòʽ£¬½ø¶øÀûÓÃÆ½·½²î¹«Ê½·Ö½âÒòʽµÃ³ö¼´¿É£»
£¨3£©Ê×ÏȽ«µÚÒ»¡¢ËÄÏîÒÔ¼°µÚ¶þ¡¢ÈýÏî×éºÏ£¬½ø¶øÌáÈ¡¹«Òòʽ·¨·Ö½âÒòʽ£¬¼´¿ÉµÃ³öa£¬b£¬cµÄ¹ØÏµ£¬ÅжÏÈý½ÇÐÎÐÎ×´¼´¿É£®
½â´ð ½â£º£¨1£©x2+2xy+y2=£¨x+y£©2£»
£¨2£©a2-9-2ab+b2
=£¨a-b£©2-32
=£¨a-b+3£©£¨a-b-3£©£»
£¨3£©¡ßa2-4bc+4ac-ab=0£¬
a2-ab+4ac-4bc=0£¬
¡àa£¨a-b£©+4c£¨a-b£©=0£¬
¡à£¨a-b£©£¨a+4c£©=0£¬
¡ßa+4c£¾0£¬
¡àa-b=0£¬
¡àa=b£¬
¡à¡÷ABCµÄÐÎ×´ÊǵÈÑüÈý½ÇÐΣ®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁË·Ö×é·Ö½â·¨·Ö½âÒòʽÒÔ¼°µÈÑüÈý½ÇÐεÄÅж¨£¬ÕýÈ··Ö×é·Ö½âµÃ³öÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®ÈôÏôÏô±ÈÃÈÃÈÖØ3ǧ¿Ë¼ÇΪ+3£¬ÔòÃÈÃȱÈ˧˧Çá3ǧ¿Ë¼ÇΪ£¨¡¡¡¡£©
| A£® | +3 | B£® | 0 | C£® | -3 | D£® | -6 |
15£®Á·Ï°ÖУ¬Ð¡Ã÷ͬѧ×öÁËÈçÏÂ4µÀÒòʽ·Ö½âÌ⣬ÄãÈÏΪСÃ÷×öµÃÕýÈ·µÄÓУ¨¡¡¡¡£©
¢Ùx3+x=x£¨x+1£©£¨x-1£©£»
¢Úx2-2xy+y2=£¨x-y£©2£»
¢Ûa2-a+1=a£¨a-1£©+1£»
¢Üx2-16y2=£¨x+4y£©£¨x-4y£©£®
¢Ùx3+x=x£¨x+1£©£¨x-1£©£»
¢Úx2-2xy+y2=£¨x-y£©2£»
¢Ûa2-a+1=a£¨a-1£©+1£»
¢Üx2-16y2=£¨x+4y£©£¨x-4y£©£®
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
5£®
Èçͼ£¬ÒÑÖª¡÷ABCµÄÖܳ¤ÊÇ21£¬OB£¬OC·Ö±ðƽ·Ö¡ÏABCºÍ¡ÏACB£¬OD¡ÍBCÓÚ£¬ÇÒOD=4£¬¡÷ABCµÄÃæ»ýÊÇ£¨¡¡¡¡£©
| A£® | 25 | B£® | 84 | C£® | 42 | D£® | 21 |
9£®Èç¹ûa£¾b£¬ÔòÏÂÁв»µÈʽÖгÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A£® | a-3£¼b-3 | B£® | 3-a£¼3-b | C£® | $\frac{1}{3}$a£¼$\frac{1}{3}$b | D£® | -2a£¾-2b |