ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªa£¬b£¬cΪ¡÷ABCµÄÈý±ßÇÒÂú×ãa2c2-b2c2=a4-b4£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£®Ð¡Ã÷ͬѧÊÇÕâÑù½â´ðµÄ£®½â£º¡ßa2c2-b2c2=a4-b4£¬¡àc2£¨a2-b2£©=£¨a2+b2£©£¨a2-b2£©
¡à$\frac{{c}^{2}={a}^{2}+{b}^{2}}{£¿}$£® ¶©Õý£º¡à¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®
ºáÏßÓëÎʺÅÊÇÀÏʦ¸øËûµÄÅú×¢£¬ÀÏʦ»¹Ð´ÁËÈçÏÂÆÀÓ¡°ÄãµÄ½âÌâ˼·ºÜÇåÎú£¬µ«½âÌâ¹ý³ÌÖгöÏÖÁË´íÎó£¬ÏàÐÅÄãÔÙ˼¿¼Ò»Ï£¬Ò»¶¨ÄÜд³öÍêÕûµÄ½âÌâ¹ý³Ì£®¡±ÇëÄã°ïÖúСÃ÷¶©Õý´ËÌ⣬ºÃÂð£¿
·ÖÎö ¸ù¾Ý¹Û²ì¿ÉÖª£º²»ÄÜÖ»ÊÇc2=a2+b2£®Èôa2-b2=0£¬¾Í²»»áµÃ³öc2=a2+b2£»Èôa2-b2¡Ù0£¬¿ÉµÃ³öc2=a2+b2£»ÏÔÈ»£¬´ËÌâÐè·ÖÀàÌÖÂÛ£®
½â´ð ½â£º¡ßa2c2-b2c2=a4-b4£¬¡àc2£¨a2-b2£©=£¨a2+b2£©£¨a2-b2£©
¡àc2£¨a2-b2£©-£¨a2-b2£©£¨a2+b2£©=0£¬
¡à£¨a2-b2£©[c2-£¨a2+b2£©]=0£¬
¡àa2-b2=0»òc2-£¨a2+b2£©=0£®¹Êa=b»òc2=a2+b2£¬
¡à¡÷ABCÊǵÈÑüÈý½ÇÐλòÖ±½ÇÈý½ÇÐλòµÈÑüÖ±½ÇÈý½ÇÐÎ
µãÆÀ ±¾Ì⿼²é¹´¹É¶¨ÀíµÄÄæ¶¨ÀíµÄÓ¦ÓᢷÖÀàÌÖÂÛ£®ÅжÏÈý½ÇÐÎÊÇ·ñΪֱ½ÇÈý½ÇÐΣ¬ÒÑÖªÈý½ÇÐÎÈý±ßµÄ³¤£¬Ö»ÒªÀûÓù´¹É¶¨ÀíµÄÄæ¶¨Àí¼ÓÒÔÅжϼ´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®
Èçͼ£¬¡÷ABCÖУ¬AE½»BCÓÚµãD£¬¡ÏC=¡ÏCBE£¬AD£ºDE=3£º5£¬BD=4£¬ÔòDCµÄ³¤µÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{15}{4}$ | B£® | $\frac{12}{5}$ | C£® | $\frac{20}{3}$ | D£® | $\frac{17}{4}$ |