题目内容

10.如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE,在点D变化的过程中,线段BE的最小值是$\sqrt{61}$-6cm.

分析 由∠AEC=90°知E在以AC为直径的⊙M的$\widehat{CN}$上(不含点C、可含点N),从而得BE最短时,即为连接BM与⊙M的交点(图中点E′点),作MF⊥AB于F,证△AMF∽△ABC,根据相似三角形的性质得到MF,根据勾股定理得到AF,BF,BM,于是得到结论.

解答 解:如图,

由题意知,∠AEC=90°,
∴E在以AC为直径的⊙M的$\widehat{CN}$上(不含点C、可含点N),
∴BE最短时,即为连接BM与⊙M的交点(图中点E′点),
∵AB=13cm,AC=12cm,BC=5cm,
∴AC2+BC2=AB2
∴∠ACB=90°,
作MF⊥AB于F,
∴∠AFM=∠ACB=90°,∠FAM=∠CAB,
∴△AMF∽△ABC,
∴$\frac{MF}{BC}$=$\frac{AM}{AB}$,即$\frac{MF}{5}$=$\frac{6}{13}$,得MF=$\frac{30}{13}$,
∴AF=$\sqrt{A{M}^{2}-M{F}^{2}}$=$\frac{72}{13}$,
则BF=AB-AF=$\frac{97}{13}$,
∴BM=$\sqrt{M{F}^{2}+B{F}^{2}}$=$\sqrt{61}$,
∵ME=6,
∴BE长度的最小值BE′=BM-ME′=$\sqrt{61}$-6,
故答案为:$\sqrt{61}$-6.

点评 本题主要考查圆周角定理、勾股定理、相似三角形的判定与性质等知识点,根据题意得出BE最短时,即为连接BM与⊙M的交点是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网