题目内容

12.如图,在?ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.
(1)求证:AB=CF;
(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.

分析 (1)利用平行四边形的性质得出∠BAF=∠CFA,进而得出△AEB≌△FEC(AAS),求出答案;
(2)首先得出四边形ABFC是平行四边形,进而得出答案.

解答 (1)证明:∵四边形ABCD是平行四边形,
∴AB∥DF,
∴∠BAF=∠CFA.
∵E为BC的中点,
∴BE=CE.
在△AEB和△FEC中,
$\left\{\begin{array}{l}{∠BAE=∠CFA}\\{∠AEB=∠FEC}\\{BE=EC}\end{array}\right.$,
∴△AEB≌△FEC(AAS)
∴AB=CF;

(2)解:当BC=AF时,四边形ABFC是矩形,
理由:∵AB=CF,AB‖CF,
∴四边形ABFC是平行四边形,
∵BC=AF,
∴四边形ABFC是矩形.

点评 此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,正确得出△AEB≌△FEC(AAS)是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网