题目内容
5.已知双曲线y=$\frac{1}{x}$(x>0),直线l1:y-$\sqrt{2}$=k(x-$\sqrt{2}$)(k<0)过定点F且与双曲线交于A,B两点,设A(x1,y1),B(x2,y2)(x1<x2),直线l2:y=-x+$\sqrt{2}$.(1)若k=-1,求△OAB的面积S;
(2)若AB=$\frac{5}{2}$$\sqrt{2}$,求k的值;
(3)设N(0,2$\sqrt{2}$),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.(参考公式:在平面直角坐标系中,若A(x1,y1),B(x2,y2)则A,B两点间的距离为AB=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$)
分析 (1)将l1与y=$\frac{1}{x}$组成方程组,即可得到C点坐标,从而求出△OAB的面积;
(2)根据题意得:$\left\{\begin{array}{l}y-\sqrt{2}=k(x-\sqrt{2})\\ y=\frac{1}{x}\end{array}\right.$ 整理得:kx2+$\sqrt{2}$(1-k)x-1=0(k<0),根据根与系数的关系得到2k2+5k+2=0,从而求出k的值;
(3)设P(x,$\frac{1}{x}$),则M(-$\frac{1}{x}$+$\sqrt{2}$,$\frac{1}{x}$),根据PM=PF,求出点P的坐标.
解答
解:(1)当k=-1时,l1:y=-x+2$\sqrt{2}$,
联立得,$\left\{\begin{array}{l}y=-x+2\sqrt{2}\\ y=\frac{1}{x}\end{array}\right.$,化简得x2-2$\sqrt{2}$x+1=0,
解得:x1=$\sqrt{2}$-1,x2=$\sqrt{2}$+1,
设直线l1与y轴交于点C,则C(0,2$\sqrt{2}$).
S△OAB=S△AOC-S△BOC=$\frac{1}{2}$•2$\sqrt{2}$•(x2-x1)=2$\sqrt{2}$;
(2)根据题意得:$\left\{\begin{array}{l}y-\sqrt{2}=k(x-\sqrt{2})\\ y=\frac{1}{x}\end{array}\right.$ 整理得:kx2+$\sqrt{2}$(1-k)x-1=0(k<0),
∵△=[$\sqrt{2}$(1-k)]2-4×k×(-1)=2(1+k2)>0,
∴x1、x2 是方程的两根,
∴$\left\{\begin{array}{l}{x}_{1}+{x}_{2}=\frac{\sqrt{2}(k-1)}{k}\\{x}_{1}•{x}_{2}=-\frac{1}{k}\end{array}\right.$,
∴AB2=(x1-x2)2+($\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$)2
=(x1-x2)2+($\frac{{x}_{2}-{x}_{1}}{{x}_{1}{x}_{2}}$)2
=(x1-x2)2[1+($\frac{1}{{x}_{1}{x}_{2}}$)2]
=$\frac{2(1+{k}^{2})^{2}}{{k}^{2}}$,
∴AB=-$\frac{\sqrt{2}(1+{k}^{2})}{k}$=$\frac{5\sqrt{2}}{2}$,即$\frac{1+{k}^{2}}{k}$=$\frac{5}{2}$,
整理得,2k2+5k+2=0,即(2k+1)(k+2)=0,解得k=-2或k=-$\frac{1}{2}$.
(3)F($\sqrt{2}$,$\sqrt{2}$),如图:
设P(x,$\frac{1}{x}$),则M(-$\frac{1}{x}$+$\sqrt{2}$,$\frac{1}{x}$),
则PM=x+$\frac{1}{x}$-$\sqrt{2}$=$\sqrt{(x+\frac{1}{x}-\sqrt{2})^{2}}$=$\sqrt{{x}^{2}+\frac{1}{{x}^{2}}-2\sqrt{2}(x+\frac{1}{x})+4}$,
∵PF=$\sqrt{(x-\sqrt{2})^{2}+(\frac{1}{x}-\sqrt{2})^{2}}$=$\sqrt{{x}^{2}+\frac{1}{{x}^{2}}-2\sqrt{2}(x+\frac{1}{x})+4}$,
∴PM=PF.
∴PM+PN=PF+PN≥NF=2,
当点P在NF上时等号成立,此时NF的方程为y=-x+2$\sqrt{2}$,
由(1)知P($\sqrt{2}$-1,$\sqrt{2}$+1),
∴当P($\sqrt{2}$-1,$\sqrt{2}$+1)时,PM+PN最小值是2.
点评 本题考查了反比例函数综合题,涉及函数图象的交点与方程组的解的关系、三角形的面积、一元二次方程根的判别式、一元二次方程的解法、两点间的距离公式的等知识,综合性较强.
| A. | 25° | B. | 35° | C. | 50° | D. | 65° |
| A. | 14 | B. | 15 | C. | 16 | D. | 17 |