题目内容

20.已知⊙O为△DEF的内切圆,切点分别为A,B,C,$\widehat{AB}$=$\widehat{BC}$.
(1)如图1,求证:BE=BF;
(2)如图2,若tan∠ABC=$\frac{4}{3}$,求sin∠EDF的值.

分析 (1)根据$\widehat{AB}$=$\widehat{BC}$,得到AB=BC,根据弦切角定理求出∠EAB=∠EBA=∠FCB=∠FBC,证明△AEB≌△CFB,得到答案;
(2)连接AC,作DG⊥AC于G,AH⊥DF于H,证明∠DAG=∠ABC,表示出AD、CD、AH的长,得到答案.

解答 解:(1)连接AC,
∵$\widehat{AB}$=$\widehat{BC}$,
∴AB=BC,∠EAB=∠EBA=∠FCB=∠FBC,
∴△AEB≌△CFB,
∴BE=BF;
(2)连接AC,作DG⊥AC于G,AH⊥DF于H,
∵DE、DF是⊙O的切线,切点分别为A,C,
∴∠ABC=∠DAC=∠DCA,
∴AD=DC,
∴AG=CG=$\frac{1}{2}$AC,
∴tan∠DAG=tan∠ABC=$\frac{DG}{AG}$=$\frac{4}{3}$,
设DG=4k,则AG=3k,
∴AC=2AG=6k,AD=CD=5k,
$\frac{1}{2}$×AC×DG=$\frac{1}{2}$×CD×AH,
∴AH=$\frac{24}{5}$k,
∴sin∠EDF=$\frac{AH}{AD}$=$\frac{24}{25}$.

点评 本题考查的是三角形的内切圆的知识,掌握弦切角定理、切线长定理和锐角三角函数的概念是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网