题目内容
16.分析 连结AC,如图,设半径为r,先根据切线的性质得∠ACD=90°,再根据平行四边形的性质得AB∥CD,AD∥BC,则∠CAF=90°,∠1=∠B,∠2=∠3,利用∠B=∠3易得∠1=∠2=45°,则根据弧长公式可得$\frac{45π×r}{180}$=π,解得r=4,然后根据扇形面积公式,利用S阴影部分=S△ACD-S扇形CAE进行计算即可.
解答 解:连结AC,如图,设半径为r,![]()
∵AB的长为半径的圆恰好与CD相切于点C,
∴AC⊥CD,
∴∠ACD=90°,
∵四边形ABCD为平行四边形,
∴AB∥CD,AD∥BC,
∴∠CAF=90°,∠1=∠B,∠2=∠3,
而AB=AC,
∴∠B=∠3,
∴∠1=∠2=45°,
∵$\widehat{EF}$的长为π,
∴$\frac{45π×r}{180}$=π,解得r=4,
在Rt△ACD中,∵∠2=45°,
∴AC=CD=4,
∴S阴影部分=S△ACD-S扇形CAE=$\frac{1}{2}$×4×4-$\frac{45π×{4}^{2}}{360}$=8-2π,
故答案为:8-2π.
点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了平行四边形的性质和扇形的面积公式.
练习册系列答案
相关题目
6.研究表明,弹簧挂上物体后会伸长,已知弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:
(1)上表反映了哪些变量之间的关系?哪个是自变量?哪个是自变量的函数?
(2)当物体的质量为3kg时,弹簧的长度是多少?
(3)如果物体的质量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;
(4)当物体的质量为3.5kg时,你能说出弹簧的长度吗?
(5)当弹簧的长度为12.5cm时,根据(3)求出所挂物体的质量.
| 物体的质量(kg) | 0 | 1 | 2 | 3 | 4 | … |
| 弹簧的长度(cm) | 8 | 8.5 | 9 | 9.5 | 10 | … |
(2)当物体的质量为3kg时,弹簧的长度是多少?
(3)如果物体的质量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;
(4)当物体的质量为3.5kg时,你能说出弹簧的长度吗?
(5)当弹簧的长度为12.5cm时,根据(3)求出所挂物体的质量.
1.如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是( )

| A. | $2\sqrt{2}cm$ | B. | $3\sqrt{2}cm$ | C. | $4\sqrt{2}cm$ | D. | $5\sqrt{2}cm$ |
6.函数y=$\sqrt{x+2}$中,自变量x的取值范围是( )
| A. | x≥-2 | B. | x<-2 | C. | x≥0 | D. | x≠-2 |