题目内容

20.如图,已知AO⊥OB,CO⊥DO,∠BOC=β°,则∠AOD的度数为(  )
A.β°-90°B.2β°-90°C.180°-β°D.2β°-180°

分析 首先根据垂直定义可得∠COD=90°,∠AOB=90°,再根据同角的余角相等可得∠BOD=∠AOC,再由条件∠BOC=β,可表示出∠BOD=∠AOC的度数,进而得到答案.

解答 解:∵AO⊥BE,CO⊥DO,
∴∠COD=90°,∠AOB=90°,
即:∠AOD+∠BOD=∠AOD+∠AOC=90°,
∴∠BOD=∠AOC,
∵∠BOC=β°,
∴∠BOD=∠AOC=(β-90)°,
∴∠AOD=90°-β°+90°=180°-β°.
故选:C.

点评 此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网