题目内容

19.已知,如图,△ABC中,∠A=90°,AB=AC,D是BC边上的中点,E、F分别是AB、AC上的点,且∠EDF=90°,求证:BE=AF.

分析 根据等腰三角形性质,三角形内角和定理,直角三角形斜边上中线,等腰三角形性质求出AD⊥BC,∠B=∠C=45°,∠BAD=∠FAD=45°,AD=BD=DC,求出∠ADB=90°,∠EDB=∠FDA,根据ASA证出△ADF≌△BDE即可.

解答 证明:∵△ABC中,∠A=90°,AB=AC,D是BC边上的中点,
∴AD⊥BC,∠B=∠C=45°,∠BAD=∠FAD=45°,AD=BD=DC,
∴∠ADB=90°,
∴∠EDB=∠FDA=90°-∠ADE,
在△ADF和△BDE中
$\left\{\begin{array}{l}{∠ADF=∠BDE}\\{AD=BD}\\{∠FAD=∠B=45°}\end{array}\right.$
∴△ADF≌△BDE(ASA),
∴BE=AF.

点评 本题考查了等腰三角形性质,三角形内角和定理,直角三角形斜边上中线,等腰三角形性质,全等三角形的性质和判定的应用,能求出△ADF≌△BDE是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网