题目内容

11.解方程组:
(1)$\left\{\begin{array}{l}{x+2y=10}\\{y=2x}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+3y=7}\\{x-3y=8}\end{array}\right.$ 
(3)$\left\{\begin{array}{l}{\frac{2(x-y)}{3}+1=\frac{x+y}{4}}\\{3(x+y)-2(2x-y)=8}\end{array}\right.$.

分析 (1)利用代入消元法求得方程组的解;
(2)利用加减消元法求得方程组的解;
(3)首先化简方程组,进一步利用加减消元法求得方程组的解.

解答 解:(1)$\left\{\begin{array}{l}{x+2y=10①}\\{y=2x②}\end{array}\right.$
把②代入①得x+2×2x=10.
解得:x=2,
代入②得y=4,
所以原方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$.
(2)$\left\{\begin{array}{l}{2x+3y=7①}\\{x-3y=8②}\end{array}\right.$
①+②得3x=15,
解得:x=5,
代入②得5-3y=8
解得:y=-1,
$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{\frac{2(x-y)}{3}+1=\frac{x+y}{4}}\\{3(x+y)-2(2x-y)=8}\end{array}\right.$,
化简得$\left\{\begin{array}{l}{5x-11y=-12①}\\{-x+5y=8②}\end{array}\right.$,
①+②×5得14y=28,
解得:y=2,
代入②得-x+10=8,
解得:x=2,
所以原方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网