题目内容

6.如图,菱形ABCD边长为2cm,∠ABC=60°,且M是BC边的中点,P是对角线BD上一动点,则PM+PC的最小值为$\sqrt{3}$.

分析 根据菱形的性质,得知A、C关于BD对称,根据轴对称的性质,将PM+PC转化为AP+PM,再根据两点之间线段最短得知AM为PM+PC的最小值.

解答 解:∵四边形ABCD为菱形,
∴A、C关于BD对称,
∴连AM交BD于P,
则PM+PC=PM+AP=AM,
根据两点之间线段最短,AM的长即为PM+PC的最小值.
∵∠ABC=60°,
∴∠ABM=∠BAC=60°,
∴△ABC为等边三角形,
又∵BM=CM,
∴AM⊥BC,
∴AM=$\sqrt{A{B}^{2}-B{M}^{2}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 此题考查了轴对称---最短路径问题,解答过程要利用菱形的性质及等腰三角形的性质,转化为两点之间线段最短的问题来解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网