题目内容

19.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PD⊥AB,垂足为D,射线DP交$\widehat{AC}$于点E,交过点C的切线于点F.
(1)求证:FC=FP;
(2)若∠CAB=30°,当E是$\widehat{AC}$的中点时,判断以A,O,C,E为顶点的四边形是什么特殊四边形,并说明理由.

分析 (1)连接OC,根据切线的性质得出OC⊥CF以及∠OAC=∠OCA得∠FCP=∠FPC,可证得结论;
(2)由∠CAB=30°易得△AOE、△EOC均是等边三角形,可得AE=AO=OC=CE,易得以A,O,C,E为顶点的四边形是菱形.

解答 (1)证明:连接OC     
∵CF是⊙O的切线,
∴OC⊥CF,
∴∠FCA+∠ACO=90°,
∵OC=OA,
∴∠OCA=∠OAC,
∵PD⊥AB,
∴∠PAD+∠APD=90°,
而∠APD=∠CPF,
∴∠PAD+∠CPF=90°,
∴∠FCP=∠FPC,
∴FC=FP;

(2)解:以A,O,C,E为顶点的四边形是菱形,
理由如下:
∵∠CAB=30°,
∴∠ABC=60°,从而∠AOC=120°,
∵E是$\widehat{AC}$的中点,
∴∠AOE=∠EOC=60°,
∴△AOE、△EOC均是等边三角形,
∴AE=AO=OC=CE,
∴四边形AOCE是菱形.

点评 本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网