题目内容

已知多边形的一个内角的外角与其各个内角的和为600°,求这个多边形的边数及相应的外角的度数.
考点:多边形内角与外角
专题:
分析:根据n边形的内角和定理可知:n边形内角和为(n-2)×180°.设这个外角度数为x度,利用方程即可求出答案.
解答:解:设这个外角度数为x,根据题意,得
(n-2)×180°+x=600°,
解得:x=600°-180°n+360°=960°-180°n,
由于0<x<180°,即0<960°-180°n<180°,
解得4
1
3
<n<5
1
3

所以n=5,
600°-(5-2)×180°=60°.
故这个多边形的边数为5,相应的外角的度数是60°.
点评:主要考查了多边形的内角和定理.n边形的内角和为:180°•(n-2).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网