题目内容

13.已知:如图,∠B=∠C=90°,M是BC的中点,且DM平分∠ADC.
(1)求证:AM平分∠DAB.
(2)试说明线段DM与AM有怎样的位置关系?并证明你的结论.

分析 (1)过M作ME⊥AD于E,根据角平分线性质求出ME=MC=MB,再根据角平分线性质求出即可;
(2)根据平行线性质求出∠BAD+∠DC=180°,求出∠MAD+∠MDA=90°,即可求出答案.

解答 (1)证明:过M作ME⊥AD于E,
∵DM平分∠ADC,∠C=90°,ME⊥AD,
∴MC=ME,
∵M为BC的中点,
∴BM=MC=ME,
∵∠B=90°,ME⊥AD,
∴AM平分∠DAB;

(2)AM⊥DM,
证明:∵AB∥DC,
∴∠BAD+∠ADC=180°,
∵AM平分∠DAB,DM平分∠ADC,
∴∠MAD=$\frac{1}{2}$∠BAD,∠MDA=$\frac{1}{2}$∠ADC,
∴∠MAD+∠MDA=90°,
∴∠AMD=90°,
∴AM⊥DM.

点评 本题考查了梯形的性质,平行线的性质,角平分线性质的应用,主要考查学生综合运用性质进行推理的能力,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网