题目内容

如图①,在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,且BD⊥l于的D,CE⊥l于的E.
(1)求证:BD+CE=DE;
(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由.
考点:全等三角形的判定与性质
专题:
分析:(1)易证∠EAC=∠ABD,即可求证△ABD≌△CAE,根据全等三角形相等的性质即可解题;
(2)先根据垂直的定义得到∠AEC=∠BDA=90°,再根据等角的余角相等得到∠ABD=∠CAE,则可利用“AAS”判断△ABD≌△CAE,所以AD=CE,BD=AE,于是有BD-CE=AE-AD=DE.
解答: 证明:(1)∵∠DAB+∠EAC=90°,∠DAB+∠ABD=90°,
∴∠EAC=∠ABD,
在△ABD和△CAE中,
∠ADB=∠CEA=90°
∠ABD=∠EAC
AB=AC

∴△ABD≌△CAE(AAS),
∴BD=AE,CE=AD,
∵DE=AD+AE,
∴DE=BD+CE;
(2)BD-CE=DE,
理由如下:
∵CE⊥AN,BD⊥AN,
∴∠AEC=∠BDA=90°,
∴∠BAD+∠ABD=90°,
∵∠BAC=90°,即∠BAD+∠CAE=90°,
∴∠ABD=∠CAE,
在△ABD和△CAE中,
∠ABD=∠CAE
∠ADB=∠CEA
AB=CA

∴△ABD≌△CAE(AAS),
∴AD=CE,BD=AE,
∴BD-CE=AE-AD=DE.
点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,本题中求证△ABD≌△CAE是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网