题目内容
3.(1)BE=AD吗?请说明理由;
(2)若∠ACB=40°,求∠DBE的度数.
分析 (1)求出∠BCE=∠ACD,根据SAS证出△BCE≌△ACD,得出对应边相等即可;
(2)由等腰三角形的性质和三角形内角和定理求出∠A=∠ABC=70°,由△BCE≌△ACD,得出对应角相等∠EBC=∠A=70°,再由三角形的外角性质得出∠DBE=∠ACB=40°即可.
解答 (1)解:BE=AD;理由如下:
∵∠ECD=∠BCA,
∴∠ECD+∠BCD=∠BCA+∠BCD,
∴∠BCE=∠ACD,
在△BCE和△ACD中,$\left\{\begin{array}{l}{BC=AC}&{\;}\\{∠BCE=∠ACD}&{\;}\\{CE=CD}&{\;}\end{array}\right.$,
∴△BCE≌△ACD(SAS),
∴BE=AD.
(2)解:∵CB=CA,∠ACB=40°,
∴∠A=∠ABC=70°,
由(1)得:△BCE≌△ACD,
∴∠EBC=∠A=70°,
∵∠DBC=∠DBE+∠EBC=∠ACB+∠ACB,
∴∠DBE=∠ACB=40°.
点评 本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外角性质;证明三角形全等是解决问题的关键.
练习册系列答案
相关题目
11.下列单项式中,次数为3的是( )
| A. | x3y | B. | x2y | C. | 3xy | D. | 3y |