题目内容

3.如图,在等腰△ABC中,CB=CA,延长AB至点D,使DB=CB,连接CD,以CD为边作等腰△CDE,使CE=CD,∠ECD=∠BCA,连接BE交CD于点M.
(1)BE=AD吗?请说明理由;
(2)若∠ACB=40°,求∠DBE的度数.

分析 (1)求出∠BCE=∠ACD,根据SAS证出△BCE≌△ACD,得出对应边相等即可;
(2)由等腰三角形的性质和三角形内角和定理求出∠A=∠ABC=70°,由△BCE≌△ACD,得出对应角相等∠EBC=∠A=70°,再由三角形的外角性质得出∠DBE=∠ACB=40°即可.

解答 (1)解:BE=AD;理由如下:
∵∠ECD=∠BCA,
∴∠ECD+∠BCD=∠BCA+∠BCD,
∴∠BCE=∠ACD,
在△BCE和△ACD中,$\left\{\begin{array}{l}{BC=AC}&{\;}\\{∠BCE=∠ACD}&{\;}\\{CE=CD}&{\;}\end{array}\right.$,
∴△BCE≌△ACD(SAS),
∴BE=AD.
(2)解:∵CB=CA,∠ACB=40°,
∴∠A=∠ABC=70°,
由(1)得:△BCE≌△ACD,
∴∠EBC=∠A=70°,
∵∠DBC=∠DBE+∠EBC=∠ACB+∠ACB,
∴∠DBE=∠ACB=40°.

点评 本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外角性质;证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网