题目内容

12.已知一次函数图象经过点(-2,7),(2,-1)
(1)求这个一次函数解析式;
(2)求出图象与两个坐标轴的交点坐标.

分析 (1)待定系数法求解可得;
(2)在函数解析式中,令x=0、y=0可分别求得图象与y轴和x轴的交点.

解答 解:(1)设该一次函数的解析式为y=kx+b,
根据题意,得:$\left\{\begin{array}{l}{-2k+b=7}\\{2k+b=-1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-2}\\{b=3}\end{array}\right.$,
∴这个一次函数解析式为y=-2x+3;

(2)在这个一次函数解析式y=-2x+3中,
当x=0时,y=3,
∴该函数图象与y轴交于点(0,3);
当y=0时,-2x+3=0,
解得:x=$\frac{3}{2}$,
∴该函数图象与x轴交于点($\frac{3}{2}$,0).

点评 本题主要考查待定系数法求一次函数解析式,待定系数法求一次函数解析式一般步骤是:
(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;
(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;
(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网