题目内容

11.已知如图:△ABC和△DAE中,AB=AD,∠BAD=∠BCE=135°,BC的延长线交DE于点F,BF⊥DE.写出线段DE、CE、BC之间的一个等量关系,并证明你的结论.

分析 根据△DAE≌△ABC得到AE=BC,DE=AC即可证明.

解答 结论:BC=DE+CE.理由如下:
证明:∵∠ECB=135°,
∴∠BCA=∠ECF=180°-∠ECB=45°,
∵∠EFC=90°,
∴∠E=90°-∠ECF=45°,
∵∠ECB=∠CAB+∠B=135°,∠DAE+CAB=135°,
∴∠DAE=∠B,
在△DAE和△ABC中,
$\left\{\begin{array}{l}{∠E=∠ACB}\\{∠DAE=∠B}\\{AD=AB}\end{array}\right.$,
∴△DAE≌△ABC,
∴DE=AC,AE=BC,
∴BC=AE=AC+CE=DE+CE.

点评 本题考查全等三角形的判定和性质、三角形的外角定理,利用三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网