题目内容

如图所示,如果?ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求?ABCD各内角的度数.
考点:平行四边形的性质
专题:
分析:由平行四边形ABCD中,∠BAD的平分线交BC于E,易得∠BAE=∠BEA,则AB=BE;又因为AE=BE,所以△ABE是等边三角形;即能求得∠BCD的度数.
解答:解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠B+∠C=180°,∠AEB=∠DAE,
∵AE是∠BAD的平分线,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AB=BE,
∵AE=BE,
∴△ABE是等边三角形,
∴∠B=60°,
∴∠BCD=120°.
∴?ABCD各内角的度数分别是:∠B=∠D=60°,∠BAD=∠C=120°.
点评:此题考查了平行四边形的性质:平行四边形的对边平行.还考查了等边三角形的判定与性质:等角对等边;等边三角形的三个角都等于60°,把四边形问题转化为三角形问题是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网