题目内容
【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥
AB,垂足为F.求证:PD+PE=CF.小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF. 小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
(1) 从小军
和小俊的思路中任选一种方法,证明PD+PE=CF。
【变式探究】
(2) 如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
【结论
运用】请运用上述解答中所积累的经验和方法完成下列题目:
(3) 如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值;
![]()
【问题情境】(本题4分)证明略 【变式探究】(本题3分)与前方法相同,两种方法任选一种。【结论运用】(本题3分)证BE=BF=DE=10,AE=6,所以AB=8,所以PG+PH=AB=8
练习册系列答案
相关题目