题目内容
甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元;购甲1件、乙2件、丙3件共需285元,那么购甲乙丙各1件共需______元
150
【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF. 小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
(1) 从小军和小俊的思路中任选一种方法,证明PD+PE=CF。 【变式探究】
(2) 如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
【结论运用】请运用上述解答中所积累的经验和方法完成下列题目:
(3) 如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值;
若菱形的对角线的长的比为3:4,周长为20,则这个菱形的面积为 .
已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④垂直于同一条直线的两直线平行;
⑤同旁内角的平分线互相垂直.其中,真命题的个数为( )
A、0 B、1个 C、2个 D、3个
从n个苹果和3个雪梨中,任选1个,若选中苹果的概率是,则n的值是( )
A、6 B、3 C、2 D、1
如图,∠C、∠l、∠2之间的大小关系是____________
如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.
(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;
(2)设∠BAO的外角和∠ABO的外的平分线相交于点P,
问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
若是方程的两个根,则______________.
【阅读理解】对于任意正实数a、b,因为≥0,所以≥0,所以≥,只有当a=b时,等号成立.
【获得结论】在≥2(a、b均为正实数)中,若ab为定值p,则≥2,只有当a=b时,有最小值2.
根据上述内容,回答下列问题:若>0,只有当= 时, +有最小值 .
【探索应用】如图,已知A(-3,0),B(0,-4),P为 双曲线上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D。求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.