ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ÊµÑé²Ù×÷£º
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÃè³öµãA´ÓµãO³ö·¢£¬Òƶ¯1´Îºó£¬2´Îºó£¬3´Îºó¿ÉÄܵ½´ïµÄµã£¬²¢°ÑÏàÓ¦µãµÄ×ø±êÌîдÔÚ±í¸ñÖУº
| A´ÓµãO³ö·¢Òƶ¯´ÎÊý | ¿ÉÄܵ½´ïµÄµãµÄ×ø±ê |
| 1´Î | £¨0£¬2£©£¬£¨1£¬0£© |
| 2´Î | £¨0£¬4£©£¬£¨1£¬2£©£¬£¨2£¬0£© |
| 3´Î | £¨0£¬6£©£¬£¨1£¬4£©£¬£¨2£¬2£©£¬£¨3£¬0£© |
ÈÎÒ»´ÎÒÆ¶¯£¬µãA¿ÉÄܵ½´ïµÄµãÔÚÎÒÃÇѧ¹ýµÄÒ»ÖÖº¯ÊýµÄͼÏóÉÏ£¬
¢ÙÇóÒÆ¶¯1´ÎºóµãA¿ÉÄܵ½´ïµÄµãËùÔÚͼÏóµÄº¯Êý±í´ïʽ£»
¢ÚÒÆ¶¯2´ÎºóÔÚº¯Êýy=-2x+4µÄͼÏóÉÏ£¬¡ÓÉ´ËÎÒÃÇÖªµÀ£¬Òƶ¯n´ÎºóÔÚº¯Êýy=-2x+2nµÄͼÏóÉÏ£®£¨ÇëÌîдÏàÓ¦µÄº¯Êý±í´ïʽ£©
£¨3£©Ì½Ë÷ÔËÓãº
µãA´ÓµãO³ö·¢¾¹ýn´ÎÒÆ¶¯ºó£¬µ½´ïÖ±Ïßy=xÉϵĵãB£¬ÇÒÆ½ÒƵÄ×Ü·¾¶³¤Îª20£¬ÇóµãBµÄ×ø±ê£®
·ÖÎö £¨1£©¸ù¾ÝµãµÄÆ½ÒÆÌØµãÃè³öÿ´ÎÆ½ÒÆºóPµãµÄλÖü´¿É£»
£¨2£©¢ÙÏȸù¾ÝPµãÆ½ÒÆÒ»´ÎºóµÄµãµÄ×ø±êÇó³ö¹ý´ËµãµÄº¯Êý½âÎöʽ£»¢ÚÔÙ¸ù¾Ýº¯ÊýͼÏóÆ½ÒÆµÄÐÔÖʽâ´ð¼´¿É£»
£¨3£©ÉèµãBµÄ×ø±êΪ£¨x£¬y£©£¬Çó³öBµãµÄ×ø±ê£¬µÃ³önµÄ·½³Ì£¬ÔÙ¸ù¾ÝµãBµÄ×ø±êΪÕýÕûÊý¼´¿É½øÐнâ´ð£®
½â´ð ½â£º£¨1£©ÈçͼËùʾ£º![]()
| P´ÓµãO³ö·¢Æ½ÒÆ´ÎÊý | ¿ÉÄܵ½´ïµÄµã µÄ×ø±ê |
| 1´Î | £¨0£¬2£©£¬£¨1£¬0£© |
| 2´Î | £¨0£¬4£©£¬£¨1£¬2£©£¬£¨2£¬0£© |
| 3´Î | £¨0£¬6£©£¬£¨1£¬4£©£¬£¨2£¬2£©£¬£¨3£¬0£© |
Ôò$\left\{\begin{array}{l}{b=2}\\{k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=2}\\{k=-2}\end{array}\right.$£¬
¹ÊµÚÒ»´ÎÆ½ÒÆºóµÄº¯Êý½âÎöʽΪ£ºy=-2x+2£»
¢ÚÒÆ¶¯2´ÎºóÔÚº¯Êýy=-2x+4µÄͼÏóÉÏ£¬¡ÓÉ´ËÎÒÃÇÖªµÀ£¬Òƶ¯n´ÎºóÔÚº¯Êýy=-2x+2nµÄͼÏóÉÏ
£¨3£©ÉèµãBµÄ×ø±êΪ£¨x£¬y£©£¬ÒÀÌâÒâÓÐ$\left\{\begin{array}{l}{y=-2x+2n}\\{y=x}\end{array}\right.$£¬
½âÕâ¸ö·½³Ì×飬µÃµ½µãBµÄ×ø±êΪ£¨$\frac{2}{3}$n£¬$\frac{2}{3}$n£©£®
¡ßÆ½ÒÆµÄ·¾¶³¤Îªx+y£¬
¡à$\frac{2}{3}$n+$\frac{2}{3}$n=20£¬
¡àn=15£®
¡àµãBµÄ×ø±êΪ£¨10£¬10£©£®
µãÆÀ ±¾Ì⿼²éµÄÊÇÒ»´Îº¯ÊýµÄͼÏóÓ뼸ºÎ±ä»»£¬ÊìÖªº¯ÊýͼÏóÆ½ÒÆµÄ·¨ÔòÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®
1883Ä꣬¿µÍжû¹¹ÔìµÄÕâ¸ö·ÖÐΣ¬³Æ×÷¿µÍжû¼¯£¬´ÓÊýÖáÉϵ¥Î»³¤¶ÈÏ߶οªÊ¼£¬¿µÍжûÈ¡×߯äÖмäÈý·ÖÖ®Ò»¶ø´ïµ½µÚÒ»½×¶Î£¬È»ºó´Óÿһ¸öÓàϵÄÈý·ÖÖ®Ò»Ïß¶ÎÖÐÈ¡×߯äÖмäÈý·ÖÖ®Ò»¶ø´ïµ½µÚ¶þ½×¶Î£¬ÎÞÏÞµØÖظ´ÕâÒ»¹ý³Ì£¬ÓàϵÄÎÞÇîµã¼¯¾Í³Æ×ö¿µÍжû¼¯£¬ÉÏͼÊÇ¿µÍжû¼¯µÄ×î³õ¼¸¸ö½×¶Î£¬µ±´ïµ½µÚn¸ö½×¶Îʱ£¬ÓàϵÄËùÓÐÏ߶εij¤¶ÈÖ®ºÍΪ£¨¡¡¡¡£©
| A£® | $\frac{2n}{3}$ | B£® | $\frac{2n}{3}$ | C£® | ${£¨\frac{2}{3}£©^n}$ | D£® | ${£¨\frac{2}{3}£©^{n-1}}$ |