题目内容
令
+
+
+
+…+
=S,则3S+
= .
| 1 |
| 1×4 |
| 1 |
| 2×5 |
| 1 |
| 3×6 |
| 1 |
| 4×7 |
| 1 |
| 97×100 |
| 1 |
| 98 |
考点:有理数的混合运算
专题:计算题,规律型
分析:由于3S=
+
+
+
+…+
,接着可以变为
-
+
-
…+
-
,然后计算即可得到3S的值,最后代入所求代数式计算即可解决问题.
| 3 |
| 1×4 |
| 3 |
| 2×5 |
| 3 |
| 3×6 |
| 3 |
| 4×7 |
| 3 |
| 97×100 |
| 1 |
| 1 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 97 |
| 1 |
| 100 |
解答:解:∵3S+
=
+
+
+
+…+
,
=
-
+
-
…+
-
+
=1+
+
-
-
-
+
=1+
=1
.
故答案为:1
.
| 1 |
| 98 |
| 3 |
| 1×4 |
| 3 |
| 2×5 |
| 3 |
| 3×6 |
| 3 |
| 4×7 |
| 3 |
| 97×100 |
=
| 1 |
| 1 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 97 |
| 1 |
| 100 |
| 1 |
| 98 |
=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 98 |
| 1 |
| 99 |
| 1 |
| 100 |
| 1 |
| 98 |
=1+
| 1451 |
| 9900 |
=1
| 1451 |
| 9900 |
故答案为:1
| 1451 |
| 9900 |
点评:此题主要考查了有理数的混合运算,解题的关键是首先求出3S,主要把3S=
+
+
+
+…+
变为
-
+
-
…+
-
,然后利用有理数的运算法则即可求出结果.
| 3 |
| 1×4 |
| 3 |
| 2×5 |
| 3 |
| 3×6 |
| 3 |
| 4×7 |
| 3 |
| 97×100 |
| 1 |
| 1 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 97 |
| 1 |
| 100 |
练习册系列答案
相关题目
下列运算正确的是( )
| A、x3•x4=x12 |
| B、x3+x3=2x6 |
| C、(-2x)3=8x3 |
| D、(-6x3)÷(-2x2)=3x |