题目内容

如图,直线AB,CD相交于点O,EO⊥CD于O,OE平分∠BOF,∠1=65°,求∠BOF的度数.
考点:对顶角、邻补角,垂线
专题:
分析:根据对顶角相等,可得∠BOC,根据余角的定义,可得∠BOE,根据角平分线的定义,可得答案.
解答:解:由对顶角相等,得∠BOC=∠1=65°,
由EO⊥CD于O,得∠EOC=90°,
由于角的定义,得∠EOB=90°-∠BOC=90°-65°=25°,
由OE平分∠BOF,得
∠BOF=2∠BOE=2×25°=50°.
点评:本题考查了对顶角,利用了对顶角的性质,垂线的定义,角平分线的定义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网