题目内容

17.如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.
(1)求证:DE=EF;
(2)当∠A=44°时,求∠DEF的度数;
(3)当∠A等于多少度时,△DEF成为等边三角形?试证明你的结论.

分析 (1)根据AB=AC可得∠B=∠C,即可求证△BDE≌△CEF,即可解题;
(2)根据全等三角形的性质,得出∠BED=∠CFE,再根据三角形内角和定理以及平角的定义,即可求得∠DEF的度数;
(3)根据△DEF为等边三角形,以及△BDE≌△CEF,可得∠C的度数,最后根据等腰三角形ABC,求得其顶角的度数.

解答 解:(1)∵AB=AC,
∴∠B=∠C,
∵在△BDE和△CEF中,
$\left\{\begin{array}{l}{BD=CE}\\{∠B=∠C}\\{BE=CF}\end{array}\right.$,
∴△BDE≌△CEF(SAS),
∴DE=EF;

(2)当∠A=44°时,∠B=∠C=$\frac{1}{2}$(180°-44°)=68°,
∵△BDE≌△CEF,
∴∠BED=∠CFE,
∵△CEF中,∠CEF+∠CFE=180°-68°=112°,
∴∠BED+∠CEF=112°,
∴∠DEF=180°-112°=68°;

(3)当∠A等于60度时,△DEF成为等边三角形.
证明:若△DEF为等边三角形,则∠DEF=60°,
∴∠BED+∠CEF=120°,
又∵△BDE≌△CEF,
∴∠BED=∠CFE,
∴△CEF中,∠CEF+∠CFE=120°,
∴∠C=180°-120°=60°=∠B,
∴△ABC中,∠A=180°-60°×2=60°.

点评 本题属于三角形综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质以及全等三角形的判定与性质的综合应用,解决问题的关键是运用全等三角形的对应边相等,对应角相等进行计算推导,解题时注意三角形的内角和等于180°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网