题目内容
11.(1)求证:△ABM∽△NDA;
(2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.
分析 (1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°-∠DAN,即可证得△ABM∽△NDA;
(2)由四边形BMND为矩形,可得BM=DN,然后由△ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.
解答 (1)证明:∵四边形ABCD是正方形,
∴∠ABC=∠ADC=∠BAD=90°,
∵BM、DN分别是正方形的两个外角平分线,
∴∠ABM=∠ADN=135°,
∵∠MAN=45°,
∴∠BAM=∠AND=45°-∠DAN,
∴△ABM∽△NDA;
(2)解:∵四边形BMND为矩形,
∴BM=DN,
∵△ABM∽△NDA,
∴$\frac{AB}{DN}$=$\frac{BM}{AD}$,
∴BM2=AB2,
∴BM=AB,
∴∠BAM=∠BMA=$\frac{180°-∠ABM}{2}$=22.5°.
点评 此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.
练习册系列答案
相关题目
20.
如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是( )
| A. | ∠ACB=∠AOE | B. | AD=BD | C. | S△AOB=$\frac{1}{2}$S△ABC | D. | AE=BE |