题目内容
15.分析 根据已知条件及互余关系可证△ABD≌△CAE,则BD=AE,AD=CE,由DE=AD+AE,得出线段DE=BD+CE.
解答 证明:∵∠BAC=90°,BD⊥DE,CE⊥DE,
∴∠DAB+∠DBA=∠DAB+∠EAC,
∴∠DBA=∠EAC;
在△ABD与△CAE中,
$\left\{\begin{array}{l}{∠DBA=∠EAC}\\{∠BDA=∠AEC}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∴DE=BD+CE.
点评 该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.
练习册系列答案
相关题目
15.一个几何体的三视图如图所示,则这个几何体可能是( )

| A. | 圆锥 | B. | 球 | C. | 圆柱 | D. | 圆 |